基于超椭圆方程和序列响应面法的回转壳开孔形状优化
收稿日期: 2014-11-13
修回日期: 2015-07-23
网络出版日期: 2015-08-28
基金资助
国家自然科学基金(11362017);中国博士后科学基金(20110491693)
Shape optimization of openings on rotation shells based on super-elliptic function and sequential response surface method
Received date: 2014-11-13
Revised date: 2015-07-23
Online published: 2015-08-28
Supported by
National Natural Science Foundation of China (11362017);China Postdoctoral Science Foundation (20110491693)
含有多种功能开孔的轻质回转壳结构是航空航天结构系统内的常用支撑构件,其开孔形状直接影响结构的静动态性能。以回转壳结构为对象,基于超椭圆方程和坐标映射变换推导了回转壳开孔边界的参数化表达,开展了开孔形状动力学优化研究。为提高结构优化计算的精度、效率和收敛性,提出了准等弧长方法和基于均匀设计的序列响应面近似建模方法(SRSM),以分别实现空间超椭圆曲线的精确逼近、减少结构有限元分析成本和加快迭代收敛。以非支配排序遗传算法Ⅱ(NSGA-Ⅱ)作为响应面模型求解算法,结合有限元分析构建了回转壳开孔形状优化设计流程,开展了最大化结构一二阶频率带隙的典型回转壳结构开孔形状优化设计。结果表明,基于超椭圆方程和序列响应面法的开孔优化方法获得了有效改进结构动态特性的回转壳开孔形状,对开展计算耗时工程结构形状优化设计具有一定应用价值。
孙士平 , 胡坚堂 , 张卫红 . 基于超椭圆方程和序列响应面法的回转壳开孔形状优化[J]. 航空学报, 2015 , 36(11) : 3595 -3607 . DOI: 10.7527/S1000-6893.2015.0213
Rotation shell structures with closed functional openings are widely used as lightweight and rotary components in aeronautic and aerospace engineering. The opening's geometrical shape has great effects on structural static and dynamic performances. A parameterized geometry model to optimize the opening shape is presented based on the parametrical mapping method in this paper, by considering the opening boundary as super-elliptic function. In order to improve the accuracy, efficiency and convergence of structural optimization, isoperimetric controlling approach is employed to precisely fit space super-elliptic boundary curve for geometrical modeling, and a sequential response surface approximate method (SRSM) is proposed to reduce finite element analysis cost and accelerate the iterative convergence. Overall structural optimization procedure is constructed to carry out opening shape optimization with maximizing the difference between the first and second order frequencies in rotation shell structure. Non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ) is implemented to obtain global optimum as the SRSM sub-optimizer. Numerical results indicate that the dynamic performance of rotation shell could be enhanced remarkably by opening shape optimization using the presented optimization method combined with super-elliptic function and SRSM. The optimization procedure exhibits the application value in the computation-intensive shape optimization of engineering structures.
[1] Guz À N, Chernyshenko I S, Chekhov V N, et al. Investigations in the theory of thin shells with openings[J]. International Applied Mechanics, 1979, 15(11):1015-1043.
[2] Zirka A I, Chernopiskii D I. Experimental investigation of the stress concentration in axially compressed thick cylindrical shells with rectangular holes[J]. International Applied Mechanics, 2001, 37(5):689-691.
[3] Shariati M, Rokhi M M. Numerical and experimental investigations on buckling of steel cylindrical shells with elliptical cutout subject to axial compression[J]. Thin-WalledStructures, 2008, 46(11):1251-1261.
[4] Zhang W H, Wang D, Yang J G. A parametric mapping method for curve shape optimization on 3D panel structures[J]. International Journal for Numerical Methods in Engineering, 2010, 84(4):485-504.
[5] Zhang M M, Wang D, Zhang W H. Buckling analysis and shape optimization of cylinder shells with holes under axial compression[J]. Science Technology and Engineering, 2011, 11(9):1671-1815(in Chinese).张苗苗,王丹,张卫红.带孔圆柱壳轴压屈曲与孔形优化设计[J].科学技术与工程, 2011, 11(9):1671-1815.
[6] Hu H T, Ou S C. Maximization of the fundamental frequencies of laminated truncated conical shells with respect to fiber orientations[J]. Composite Structures, 2001, 52(3-4):265-275.
[7] Wu Z X. Optimal hole shape for minimum stress concentration using parameterized geometry models[J]. Structural and Multidisciplinary Optimization, 2009, 37(6):625-634.
[8] Pedersen N L. Optimization of holes in plates for control of eigenfrequencies[J]. Structural and Multidisciplinary Optimization, 2004, 28(1):1-10.
[9] Wang D, Zhong X J, Yu Z G. Effects of a cutout inside a rectangular plate on the plate dynamics[J]. Noise and Vibration Control, 2009(6):53-57(in Chinese).王栋,钟习建,禹志刚.开孔对矩形板动力性能影响分析[J].噪声与振动控制, 2009(6):53-57.
[10] Wang G G, Shan S. Review of meta-modeling techniques in support of engineering design optimization[J]. Journal of Mechanical Design, 2007, 129(2):370-380.
[11] Wang G G. Adaptive response surface method using inherited Latin hypercube design points[J]. Journal of Mechanical Design, 2003, 125(2):210-220.
[12] Lee Y B, Jung S H, Choi D H. Progressive quadratic response surface modeling using inherited Latin-hypercube design[C]//Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston:AIAA, 2006:7092.
[13] Wang C E, Huang Z J. Kriging response surface method based on Gauss function and trust region update approach[J]. Computer Integrated Manufacturing Systems, 2011, 17(4):740-746(in Chinese).王成恩,黄章俊.基于高斯函数和信赖域更新策略的Kriging响应面法[J].计算机集成制造系统, 2011, 17(4):740-746.
[14] Li D Y, Peng Y H, Yin J L. Optimization of metal-forming process via a hybrid intelligent optimization technique[J]. Structural and Multidisciplinary Optimization, 2007, 34:229-241.
[15] Sun G Y, Li G Y, Zhong Z H, et al. Optimization design of multi-objective particle swarm in crashworthiness based on sequential response surface method[J]. Journal of Mechanical Engineering, 2009, 45(2):224-230(in Chinese).孙光永,李光耀,钟志华,等.基于序列响应面法的汽车结构耐撞性多目标粒子群优化设计[J].机械工程学报,2009, 45(2):224-230.
[16] Pajunen S, Heinonen O. Automatic design of marine structures by using successive response surface method[J]. Structural and Multidisciplinary Optimization, 2014, 49(5):863-871.
[17] Fang K T, Ma C X. Orthogonal and uniform experimental design[M]. Beijing:Science Press, 2001:83-106(in Chinese).方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社, 2001:83-106.
[18] Simpson T W, Lin D K J, Chen W. Sampling strategies for computer experiments:Design and analysis[J]. International Journal of Reliability and Applications, 2003, 2(3):209-240.
[19] Redhe M, Forsberg J, Jansson T, et al. Using the response surface methodology and the D-optimality criterion in crashworthiness related problems[J]. Structural and Multidisciplinary Optimization, 2002, 24(3):185-194.
[20] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
/
〈 | 〉 |