超声速民机和降低音爆研究
收稿日期: 2014-07-02
修回日期: 2014-09-15
网络出版日期: 2015-09-29
Study of supersonic commercial transport and reduction of sonic boom
Received date: 2014-07-02
Revised date: 2014-09-15
Online published: 2015-09-29
朱自强 , 兰世隆 . 超声速民机和降低音爆研究[J]. 航空学报, 2015 , 36(8) : 2507 -2528 . DOI: 10.7527/S1000-6893.2014.0207
Following a brief introduction of the development history of the supersonic commercial transport (SCT), the characteristics of several developing supersonic business jets are given. The conceptual design research of the small supersonic commercial transport being served during the period 2020-2035 and their possible configurations and features are described, too. Due to sonic boom reduction being one of the main tasks for developing SCT, some optimal design methods for reducing sonic boom are discussed in detail in the present paper, which are the design method based on linearized theory, sonic boom mitigation method using inverse design of coupling Euler solver (Cart3D) and adjoint method, the approach of advanced sonic boom prediction using augmented Burgers equation, the formulation that boom propagation and CFD are formally coupled for the purpose of obtaining gradients of a ground-based objective with respect to the aircraft shape design variables, as well as the optimization and adjoint-based CFD for the conceptual design of low sonic boom aircraft.
[1] Zhu Z Q, Wu Z C, Chen Y C, et al. Advanced technology of aerodynamic design for commercial aircraft[M]. Shanghai: Shanghai Jiao Tong University Press, 2013 (in Chinese). 朱自强, 吴宗成, 陈迎春, 等. 民机空气动力学设计先进技术[M]. 上海: 上海交通大学出版社, 2013.
[2] Chudoba B, Coleman G, Roberts K, et al. What price supersonic speed?-a design anatomy of supersonic transportation-Part 1, AIAA-2007-0851[R]. Reston: AIAA, 2007.
[3] Chudoba B, Oza A, Roberts K, et al. What price supersonic speed?-an applied market research case study-Part 2, AIAA-2007-0848[R]. Reston: AIAA, 2007.
[4] Henne P A. Case for small supersonic civil aircraft[J]. Journal of Aircraft, 2005, 42(3): 765-773.
[5] Howe D C. Sonic boom reduction through the use of nonaxisymmetric configuration shaping, AIAA-2003-0929[R]. Reston: AIAA, 2003.
[6] Howe D C, Simmons F, Freund D. Development of the Gulfstream Quiet SpikeTM for sonic boom minimization, AIAA-2008-0124[R]. Reston: AIAA, 2008.
[7] Cowart R A, Grindle T. An overview of the Gulfstream/NASA Quiet SprikeTM flight test program, AIAA-2008-0123[R]. Reston: AIAA, 2008.
[8] Freund D, Howe D C, Simmons F. Quiet SpikeTM prototype aerodynamic characteristics from flight test, AIAA-2008-0125[R]. Reston: AIAA, 2008.
[9] Cumming S, Smith M, Frederick M. Aerodynamic effects on a 24-ft multi-segmented telescoping nose boom on an F-15B airplane, AIAA-2007-6638[R]. Reston: AIAA, 2007.
[10] Mona C, Cox T, Mc Werter S. Stability and controls flight test results of a 24-ft telescoping nose boom on an F-15B airplane, AIAA-2008-0126[R]. Reston: AIAA, 2008.
[11] Simmons F, Freund D, Knight M. Quiet SpikeTM prototype morphing performance during flight test, AIAA-2008-0127[R]. Reston: AIAA, 2008.
[12] Simmons F, Freund D, Spivey N D, et al. Quiet SpikeTM: the deign and validation of an extendable nose boom prototype, AIAA-2007-1774[R]. Reston: AIAA, 2007.
[13] Herrera C Y, Pak C. Build-up approach to updating the Mock Quiet SpikeTM beam model, AIAA-2007-1776[R]. Reston: AIAA, 2007.
[14] Freund D, Simmons F, Spivey N D, et al. Quiet SpikeTM prototype flight test results, AIAA-2007-1778[R]. Reston: AIAA, 2007.
[15] Howe D C, Waith K, Haering E. Quiet SpikeTM near-field flight test pressure measurements with CFD comparison, AIAA-2008-0128[R]. Reston: AIAA, 2008.
[16] Cowart R A, Freund D, Simmons F, et al. Lessons learned-Quiet SpikeTM flight test prototype program, AIAA-2008-0130[R]. Reston: AIAA, 2008.
[17] Salamone J. Recent sonic boom propagation studies at Gulfstream aerospace, AIAA-2009-3388[R]. Reston: AIAA, 2009.
[18] Dutta M, Patten K, Wuebbles D. Parametric analysis of potential effects on stratospheric and tropospheric ozone chemistry by a fleet of quiet supersonic business jets (QSJs) projected in a 2020 atmosphere[R]. Illinois: University of Illinois at Urbana-Champaign, 2002.
[19] Qian K. SSBJ, a new generation supersonic business jet[J]. International Aviation, 2012(9): 67-71 (in Chinese). 钱锟. 美国SSBJ超音速公务机前景看好[J]. 国际航空,2012(9): 67-71.
[20] Banks D W, van Dam C P, Shui H J, et al. Visualization of in-flight flow phenomena using infrared thermography[C]//9th International Symposium on Flow Visualization, 2000.
[21] Sturdza P, Manning V M, Kroo I, et al. Boundary layer calculation for preliminary design of wings in supersonic flow, AIAA-1999-3104[R]. Reston: AIAA,1999.
[22] Sturdza P. Extensive supersonic natural laminar flow on the Aerion Business Jet, AIAA-2007-0685[R]. Reston: AIAA, 2007.
[23] Rodriguez D L. Propulsion/airframe integration and optimization on a supersonic business jet, AIAA-2007-1048[R]. Reston: AIAA, 2007.
[24] Honda M, Yoshida K. D-SEND project for the low sonic boom design technology[C]//28th International Congress of the Aeronautical Sciences, 2012.
[25] Walge H R, Nelson C, Bonet J. Supersonic vehicle systems for the 2020 to 2030 timeframe, AIAA-2010-4930[R]. Reston: AIAA, 2010.
[26] Magee T E, Shaw S G, Fugal S R. Experimental validations of a low-boom aircraft design, AIAA-2013-0646[R]. Reston: AIAA, 2013.
[27] Morgenstern J, Nordstrud N, Stelmack M, et al. Final report for the advanced concept studies for supersonic commercial transports entering service in the 2030 to 2035 period, N+3 Supersonic Program, NASA CR-2010-216796[R]. Washington, D.C.: NASA, 2010.
[28] Morgenstern J, Nordstrud N. Advanced concept studies for supersonic commercial transports entering service in the 2018 to 2020 period, NASA CR-2013-217820[R]. Washington, D.C.: NASA, 2013.
[29] Morgenstern J, Buonanno M, Nordstrud N. N+2 low boom wind tunnel model design and validation, AIAA-2012-3217[R]. Reston: AIAA, 2012.
[30] Morgenstern J. Optimum signature shaping for low sonic boom, AIAA-2012-3218[R]. Reston: AIAA, 2012.
[31] George A R, Seebass R. Sonic boom minimization including both front and rear shocks[J]. AIAA Journal, 1971, 9(10): 2091-2093.
[32] Darden C M. Sonic boom minimization with nose bluntness relaxation, NASA TP 1348[R]. Washington, D.C.: NASA, 1979.
[33] Morgenstern J M. How to accurately measure low sonic boom or model surface pressures in supersonic wind tunnels, AIAA-2012-3215[R]. Reston: AIAA, 2012.
[34] Morgenstern J M. Distortion correction for low sonic boom measurement in wind tunnel, AIAA-2012-3216[R]. Reston: AIAA, 2012.
[35] Wang Y Y, Shen Y. NASA works toward low-boom supersonic demonstrator[J]. International Aviation, 2014(5): 76-77 (in Chinese). 王元元, 申洋. NASA稳步推进低声爆超声速客机验证机计划[J]. 国际航空, 2014(5): 76-77.
[36] Graham W. NASA strategy narrows breadth of aeronautics R&D, AW&ST 2013-09-02[R]. Washington, D. C.: NASA, 2013.
[37] Plotkin K J. Review of sonic boom theory, AIAA-1989-1105[R]. Reston: AIAA, 1989.
[38] Landau L D. On shock waves at large distances from the place of their origin[J]. J. Phys. U.S.S.R., 1945(9): 496.
[39] Whitham G B. The flow pattern of a supersonic projectile[J]. Communications on Pure and Applied Mathematics, 1952(5): 301-348.
[40] Whitham G B. On the propagation of weak shock waves[J]. Journal of Fluid Mechanics, 1956(1): 290-318.
[41] Lomax H. The wave drag of arbitrary configuration in linearized flow as determined by areas and forces in oblique plans, NACA RM A55A18[R]. Washington, D.C.: NASA, 1955.
[42] Blokhintzev D I. The propagation of sound in an inhomogeneous and moving medium I[J]. Journal of the Acoustical Society of America, 1946, 18(2): 322-328.
[43] Officer C B. Introduction to the theory of sound transmission[M]. New York: McGraw-Hill, 1958.
[44] Keller J B. Geometrical acoustics I. the theory of weak shock waves[J]. Journal of Applied Physics, 1955, 25(8): 938-947.
[45] Hayes W D, Haefeli R C, Djlsrud H E. Sonic boom propagation in a stratified atmosphere, with computer program, NASA CR-1299[R]. Washington, D.C.: NASA, 1969.
[46] Thomas C L. Extrapolation of sonic boom pressure signatures by the wave from parameter method, NASA TND-6832[R]. Washington, D.C.: NASA, 1972.
[47] Taylor A D. The TRAPS sonic boom program, NOAA TM ERL-87[R]. 1980.
[48] Plotkin K, Grandi F. Computer models for sonic boom analysis: PCBoom4, CABoom, BoomMap, CorBoom, Wyle Report WR 02-11[R]. 2002.
[49] Seebass A R. Sonic boom theory[J]. Journal of Aircraft, 1969, 6(3): 177-184.
[50] Runyan L J, Kane E J. Sonic boom literature survey, FAA-RD-73-129-I, FAA-RD-73-129-II[R]. 1973.
[51] Jones L B. Lower bounds for sonic bangs[J]. Journal of Royal Aeronautics Society, 1961, 65: 433-436.
[52] Carlson H W. The lower bound of attainable sonic-boom overpressure and design methods of approaching this limit, NASA-TND-1494[R]. Washington, D.C.: NASA, 1962.
[53] Carlson H W. Influence of airplane configuration on sonic boom characteristics[J]. Journal of Aircraft, 1964, 1(2): 82-86.
[54] McLean F E. Some nonasymtotic effects on the sonic boom of large airplanes, NASA TND-2877[R]. Washington, D.C.: NASA, 1965.
[55] McLean F E, Shrout B L. Design method for minimization of sonic boom pressure field disturbance[J]. Journal of Acoustical Society of America, 1966, 39(5): S19-S25.
[56] Ferri A, Ismaii A. Report on sonic boom studies, Part 1, analysis of configurations, NASA SP-180[R]. Washington, D.C.: NASA, 1968.
[57] Ferri A. Airplane configurations for low sonic boom,NASA SP-225[R]. Washington, D.C.: NASA, 1970.
[58] George A R. Lower bounds for sonic booms in the mid-field[J]. AIAA Journal, 1969, 7(8): 1542-1545.
[59] Plotkin K, Rallabhandi S K, Li W. Generalized formulation and extension of sonic boom minimization theory for front and aft shaping,AIAA-2009-1052[R]. Reston: AIAA, 2009.
[60] Rallabhandi S K, Mavris D N. Aircraft geometry design and optimization for sonic boom reduction[J]. Journal of Aircraft, 2007, 44(1): 35-47.
[61] Li W, Shields E, Le D. Interactive inverse optimization of fuselage shape for low boom supersonic concepts, AIAA-2008-0136[R]. Reston: AIAA, 2008.
[62] Mark R J. A supersonic business jet concept designed for low sonic boom, NASATM 212435[R]. Washington, D.C.: NASA, 2003.
[63] Kane E J. A study to determine the feasibility of a low sonic boom supersonic transport, NASA CR-2332[R]. Washington, D.C.: NASA, 1972.
[64] Carlson H W, Barger R W, Mack R J. Application of sonic boom minimization concepts in supersonic transport design, NASA TND-7218[R]. Washington, D.C.: NASA, 1973.
[65] Niedzwiecki A, Ribner H S. Subjective loudness and annoyance of filtered N-wave sonic booms[J]. Journal of Acoustical Society of America, 1974, 16(3): 702-705.
[66] Darden C M. Minimization of sonic boom parameters in real and isothermal atmosphere, NASA TND-7842[R]. Washington, D.C.: NASA, 1975.
[67] Mack R J, Darden C M. A wind tunnel investigation of the validity of a sonic boom minimization concept, NASA TP-1421[R]. Washington, D.C.: NASA, 1979.
[68] Darden C M, Clemans A, Hayes W D, et al. Status of sonic boom methodology and understanding, NASA CR-3027[R]. Washington, D.C.: NASA, 1988.
[69] Leatherwood J D, Sullivan B M. A loudness calculation procedure applied to shaped sonic booms, NASA TP-3134[R]. Washington, D.C.: NASA, 1991.
[70] Shephered K P, Sullivan B M. Laboratory studies of effects of boom shaping on subjective loudness and acceptability, NASA TP-3269[R]. Washington, D.C.: NASA, 1992.
[71] Darden C M . High speed research: sonic boom, Vol. 2, NASA CP-3173[R]. Washington, D.C.: NASA, 1992.
[72] McCurdy D A. High speed research: 1994 sonic boom workshop; configuration design, analysis and testing, NASA CP-209699[R]. Washington, D.C.: NASA, 1994.
[73] Maglieri D J, Sothcott V E, Keefer T N, Jr. Feasibility study on conducting overflight measurements of shaped sonic boom signatures using the Firebee BQM-34 RPV, NASA CR-189715[R]. Washington, D.C.: NASA,1993.
[74] Pawlowski J W, Graham O H, Boccadoro C H, et al. Origins and overview of the shaped sonic boom demonstration program, AIAA-2005-0005[R]. Reston: AIAA, 2005.
[75] Stansbery E G, Baize D G, Maglieri D J. In-flight technique for acquiring mid- and far-field sonic boom signatures, NASA CP-209699[R]. Washington, D.C.: NASA, 1994.
[76] Lux D, Ehernberger L J, Moes T R, et al. Low-boom SR-71 modified signature demonstration program, NASA TM-104307[R]. Washington, D.C.: NASA, 1994.
[77] Morgenstern J M, Bruns D B, Camacho P P. SR-71 a reduced sonic boom modification design, NASA CP-209699[R]. Washington, D.C.: NASA, 1994.
[78] Fouladi K. CFD predictions of sonic boom characteristics for unmodified and modified SR-71 configurations, NASA CP-209699[R]. Washington, D.C.: NASA, 1994.
[79] Haering E A, Ehernbeger L J, Whitmore S A. Preliminary airborne measurements for the SR-71 sonic boom propagation experiment, NASA TM-4307[R]. Washington, D.C.: NASA, 1995.
[80] Aftosmis M J, Nemec M, Cliff S E. Adjoint-based low boom design with Cart3D, AIAA-2011-3500[R]. Reston: AIAA, 2011.
[81] Aftosmis M J. "Cart3D Resource Website"[EB/OL]. http://people.nas.nasa.gov/aftosmas/Cart3D/Cart3Dhome. atml.
[82] Aftosmis M J, Berger M J, Adomavicius G D. A parallel multilevel method for adaptively refined Cartesian grides with embedded boundaries, AIAA-2000-0808[R]. Reston: AIAA, 2000.
[83] Nemec M, Aftosmis M J, Murman S M, et al. Adjoint formulation for an embedded boundary Cartesian method, AIAA-2005-0877[R]. Reston: AIAA, 2005.
[84] Nemec M, Aftosmis M J. Adjoint sensitivity computations for an embedded boundary Cartesian mesh method[J]. Journal of Computational Physics, 2008, 227(4): 2724-2742.
[85] Nemec M, Aftosmis M J. Parallel adjoint framework for aerodynamic shape optimization of component-based geometry, AIAA-2011-1249[R]. Reston: AIAA, 2011.
[86] Rodriguez D L, Sturdza P. A rapid geometry engine for preliminary aircraft design, AIAA-2006-0929[R]. Reston: AIAA, 2006.
[87] Suwaratana D L, Rodriguez D L. A more efficient conceptual design process using the RAGE geometry modeler, AIAA-2011-0159[R]. Reston: AIAA, 2011.
[88] Robinson L D. Sonic boom propagation through an inhomogeneous windy atmosphere[D]. Austin: University of Texas at Austin, 1991.
[89] Cleveland R O. Propagation of sonic booms through a real, stratified atmosphere[D]. Austion: University of Texas at Austin, 1995.
[90] Pilon A R. Spectrally accurate prediction of sonic boom signals[J]. Journal of Aircraft, 2007, 45(9): 2149-2156.
[91] Rallabhandi S K. Advanced sonic boom prediction using augmented Burger’s equation, AIAA-2011-1278[R]. Reston: AIAA, 2011.
[92] Rallabhandi S K. Sonic boom adjoint methodology and its applications, AIAA-2011-3497[R]. Reston: AIAA, 2011.
[93] Rallabhandi S K, Nielson E J, Diskin B. Sonic boom mitigation through aircraft design and adjoint methodology, AIAA-2012-3220[R]. Reston: AIAA, 2012.
[94] Onyeonwu R O. The effects of wind and temperature gradients on sonic boom corridors, UTIAS Technical Notes No.168[R]. 1971.
[95] Frink N T, Pirzadeh S, Parikh P, et al. The NASA tetrahedral unstructured software system[J]. The Aeronautical Journal, 2000, 104(1040): 491-499.
[96] Campbell R L, Carter M B, Deere K A, et al. Efficient unstructured grid adaptation methods for sonic boom prediction, AIAA-2008-7327[R]. Reston: AIAA, 2008.
[97] Nielson E J. FUN3D: fully unstructured Navier-Stokes[EB/OL]. http://fun3d.larc.nasa.gov.
[98] Nielson E J, Diskin B, Yamaleev N K. Discrete adjoint-based design optimization of unsteady turbulent flows on dynamic unstructured grids[J]. AIAA Journal, 2010, 48(6): 1195-1206.
[99] Park M A, Darmofal D L. Validation of output-adaptive, tetrahedral cut-cell method for sonic boom prediction[J]. AIAA Journal, 2010, 48(9): 1928-1945.
[100] Nielson E J, Jones W T. Integrated design of an active flow control system using a time-dependent adjoint method[J]. Mathematical Modeling of Natural Phenomena, 2011, 6(3): 141-165.
[101] Park M A. Low boom configuration analysis with FUN3D adjoint simulation framework, AIAA-2011-3337[R]. Reston: AIAA, 2011.
[102] Park M A, Aftosmis M J, Campbell R L, et al. Summary of the 2008 NASA fundamental aeronautics program sonic boom prediction workshop, AIAA-2013-0649[R]. Reston: AIAA, 2013.
[103] Waithe K A. Introduction of first low boom prediction workshop, AIAA-2013-0650[R]. Reston: AIAA, 2013.
[104] Morgenstern J M, Buonanno M, Marconi F. Full configuration low boom model and grids for 2014 sonic boom prediction workshop, AIAA-2013-0647[R]. Reston: AIAA, 2013.
[105] Wintzer M, Kroo I. Optimization and adjoint-based CFD for the conceptual design of low sonic boom aircraft, AIAA-2012-0963[R]. Reston: AIAA, 2012.
[106] Seebass R, George A R. Sonic boom minimization[J]. Journal of Acoustical Society of America, 1972, 51(2): 686-694.
[107] George A R, Plotkin K J. Sonic boom waveforms and amplitudes in a real atmosphere[J]. AIAA Journal, 1969, 7(10): 1978-1981.
[108] Hass A, Kroo I. A multi-shock inverse design method for low boom supersonic aircraft, AIAA-2010-0843[R]. Reston: AIAA, 2010.
[109] Durston D A. A preliminary evaluation of sonic boom extrapolation and loudness calculation methods, NASA CP 10133[R]. Washington, D.C.: NASA, 1993.
[110] Gill P E, Murray W, Sauners M A. User’s guide for SNOPT version 7[R]. Stanford: Stanford University, 2006.
[111] Kroo I. PASS: program for aircraft synthesis studies[M]. 2nd ed. Palo Alto, CA: Desktop Aeronautics Inc., 2011.
[112] Li W, Shieds E, Daniel L. Interactive inverse design optimization of fuselage shape for low boom supersonic concepts[J]. Journal of Aircraft, 2008, 45(9): 1381-1397.
[113] Li W, Shieds E, Geiselhart K. A mixed approach for design of low boom supersonic aircraft, AIAA-2010-0845[R]. Reston: AIAA, 2010.
[114] Li W, Rallabhandi S K. Inverse design of low boom supersonic concepts using reversed equivalent-area targets, AIAA-2011-3498[R]. Reston: AIAA, 2011.
[115] Ordaz I, Li W. Using CFD surface solutions to shape sonic boom signatures propagated from off-body pressure, AIAA-2013-2660[R]. Reston: AIAA, 2013.
[116] Chen P, Li X D. Frequency domain method for predicting sonic boom propagation based on Khokhlov-Zabolotskaya-Kuznetsov equation[J]. Journal of Aerospace Power, 2010, 25(2): 359-365 (in Chinese). 陈鹏,李晓东. 基于Khokhlov-Zabolotskaya-Kuznetsov方程的声爆频域预测法[J]. 航空动力学报, 2010,25(2): 359-365.
[117] Feng X Q, Li Z K, Song B F. Preliminary analysis on the sonic boom of supersonic aircraft[J]. Flight Dynamics, 2010, 28(6): 21-27 (in Chinese). 冯晓强, 李占科, 宋笔锋. 超声速客机音爆问题初步研究[J]. 飞行力学, 2010, 28(6): 21-27.
[118] Feng X Q, Li Z K, Song B F. A research on inverse design method of a lower sonic boom supersonic aircraft configuration[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(11): 1980-1986 (in Chinese). 冯晓强, 李占科, 宋笔锋. 超声速客机低音爆布局反设计技术研究[J]. 航空学报, 2011, 32(11): 1980-1986.
[119] Feng X Q, Li Z K, Song B F. Research of low sonic boom quiet spike design method[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1009-1017 (in Chinese). 冯晓强, 李占科, 宋笔锋. 低音爆静音锥设计方法研究[J]. 航空学报, 2013, 34(5): 1009-1017.
[120] Feng X Q, Li Z K, Song B F. Hybrid optimization approach research for low sonic boom supersonic aircraft configuration[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1768-1777 (in Chinese). 冯晓强, 李占科, 宋笔锋. 超声速飞机低音爆布局混合优化方法研究[J]. 航空学报, 2013, 34(8): 1768-1777.
[121] Feng X Q, Li Z K, Song B F, et al. Optimization of sonic boom and aerodynamic based on structured/unstructured hybrid grid[J]. Acta Aerodynamica Sinica, 2014, 32(1): 30-37 (in Chinese). 冯晓强, 李占科, 宋笔锋, 等. 基于混合网格的声爆/气动一体化设计方法研究[J]. 空气动力学学报, 2014, 32(1): 30-37.
[122] Minelli A, Din I S. Cooperative and competition strategies in multi-objective shape optimization-application to low boom/low drag supersonic business jet, AIAA-2013-2648[R]. Reston: AIAA, 2013.
[123] Peigin S, Zhu Z Q, Epstein B. Applicable numerical optimization methods for aerodynamic design of civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 58-69 (in Chinese). Sergey Peigin, 朱自强, Boris Epstein. 可应用于民机空气动力设计中的数值优化方法[J]. 航空学报, 2014, 35(1): 58-69.
/
〈 | 〉 |