自适应高阶容积卡尔曼滤波在目标跟踪中的应用
收稿日期: 2015-01-09
修回日期: 2015-06-14
网络出版日期: 2015-07-02
基金资助
国家自然科学基金(61304236)
Application of adaptive high-degree cubature Kalman filter in target tracking
Received date: 2015-01-09
Revised date: 2015-06-14
Online published: 2015-07-02
Supported by
National Natural Science Foundation of China (61304236)
针对传统容积卡尔曼滤波(CKF)在系统状态发生突变时估计精度下降的问题,将强跟踪滤波(STF)算法与高阶容积卡尔曼滤波(HCKF)算法相结合,提出了一种自适应高阶容积卡尔曼滤波(AHCKF)方法。该算法采用高阶球面-相径容积规则,可获得高于传统CKF的估计精度,同时在HCKF算法中引入STF,通过渐消因子在线修正预测误差协方差阵,强迫残差序列正交,提高了算法的鲁棒性,增强了算法应对系统状态突变等不确定因素的能力。将提出的AHCKF算法应用于具有状态突变的机动目标跟踪问题并进行数值仿真,仿真结果表明,AHCKF算法在系统状态发生突变的情况下表现出良好的滤波性能,有效地避免了状态突变造成的滤波精度下降,较传统的CKF、HCKF、交互式多模型-容积滤波(IMM-CKF)和自适应容积卡尔曼滤波(ACKF)算法有更强的鲁棒性和系统自适应能力。
关键词: 非线性估计; 目标跟踪; 自适应滤波; 容积卡尔曼滤波; 高阶球面-相径容积规则
崔乃刚 , 张龙 , 王小刚 , 杨峰 , 卢宝刚 . 自适应高阶容积卡尔曼滤波在目标跟踪中的应用[J]. 航空学报, 2015 , 36(12) : 3885 -3895 . DOI: 10.7527/S1000-6893.2015.0180
An improved high-degree cubature Kalman filter(HCKF)combined with strong tracking filter (STF) algorithm is proposed to overcome the decreasing estimation precision of conventional cubature Kalman filter (CKF) when system states suddenly change and an adaptive high-degree cubature Kalman filter (AHCKF) is established. Based on the high-degree spherical-radial cubature rule, the new method can obtain better accuracy than conventional CKF. Meanwhile, by introducing the STF into HCKF and modifying the predicted states' error covariance with a fading factor, the residual sequence is forced to be orthogonal so that the robustness of the filter and the capability to deal with uncertainty factors are improved. A maneuvering target tracking problem with unknown sudden states' changes in system states is used to test the performance of the proposed filter. The simulation results indicate that AHCKF can achieve good filtering performance and effectively overcome the precision decrease of filters when states' changes suddenly occur, with greater robustness and better system adaptive capacity than the conventional CKF, HCKF, interacting multiple mode-based CKF (IMM-CKF) and adaptive cubature Kalman filter (ACKF).
[1] Ito K, Xiong K. Gaussian filters for nonlinear filtering problems[J]. IEEE Transactions on Automatic Control, 2000, 45(5):910-927.
[2] Arasaratnam I, Haykin S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6):1254-1269.
[3] Arasaratnam I, Haykin S, Hurd R T. Cubature Kalman filtering for continuous-discrete system:Theory and simulations[J]. IEEE Transactions on Signal Processing, 2010, 58(10):4977-4993.
[4] Fernandez-Prades C, Vila-Valls J. Bayesian nonlinear filtering using quadrature and cubature rules applied to sensor data fusion for positioning[C]//Proceedings of IEEE International Conference on Communications (ICC). Piscataway, NJ:IEEE Press, 2010:1-5.
[5] Huang J J, Zhong J L, Jiang F. A CKF based on spatial alignment of radar and infrared sensors[C]//Proceedings of 2010 IEEE 10th International Conference on Signal Processing. Piscataway, NJ:IEEE Press, 2010:2386-2390.
[6] He Z K, Liu G B, Zhao X J, et al. Adaptive square-root cubature Kalman filter based on Gaussian process regression models[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2202-2211(in Chinese).何志昆,刘光斌,赵曦晶,等.基于GPR模型的自适应平方根容积卡尔曼滤波算法[J].航空学报, 2013, 34(9):2202-2211.
[7] Li C, Ge Q. SCKF for MAV attitude estimation[C]//Proceedings of 2011 International Conference on Machine Learning and Cybernetics (ICMLC), 2011:1313-1318.
[8] Wei X Q, Song S M. Improved cubature Kalman filter based attitude estimation avoiding singularity[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):610-619(in Chinese).魏喜庆,宋申民.基于改进容积卡尔曼滤波的奇异避免姿态估计[J].航空学报, 2013, 34(3):610-619.
[9] Pesonen H, Piche R. Cubature-based Kalman filters for positioning[C]//Proceedings of the 7th Workshop on Positioning Navigation and Communication, 2010:45-49.
[10] Yu H, Wei X Q, Song S M, et al. Relative motion estimation of non-cooperative spacecraft based on adaptive CKF[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2251-2260(in Chinese).于浛,魏喜庆,宋申民,等.基于自适应容积卡尔曼滤波的非合作航天器相对运动估计[J].航空学报, 2014, 35(8):2251-2260.
[11] Liu Z X, Xie W X, Wang P. Tracking a target using a cubature Kalman filter versus unbiased converted measurements[C]//Proceedings of IEEE ICSP. Piscataway, NJ:IEEE Press, 2012:2130-2133.
[12] Sun T, Xin M. Hypersonic entry vehicle state es-timation using high degree cubature Kalman filter[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2014:2383-2394.
[13] Jia B, Xin M, Cheng Y. The high-degree cubature Kalman filter[C]//Proceedings of the 51st IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2012:4095-4100.
[14] Jia B, Xin M, Cheng Y. High-degree cubature Kalman filters[J]. Automatica, 2013(49):510-518.
[15] Zhou D H, Ye Y Z. Modern fault diagnosis and tolerance fault control[M]. Beijing:Tsinghua University Press, 2000:224-227.
[16] Liu Y L, Feng X X. A fading quadrature Kalman filter for nonlinear systems[J]. Journal of Astronautics, 2013, 34(10):1370-1377(in Chinese).刘玉磊,冯新喜.带渐消因子的Quadrature卡尔曼滤波[J].宇航学报, 2013, 34(10):1370-1377.
[17] Li Q R, Sun F. Strong tracking cubature Kalman filter algorithm for GPS/INS integrated navigation system[C]//Proceedings of 2013 IEEE International Conference on Mechatronics and Automation. Piscataway, NJ:IEEE Press, 2013:1113-1117.
[18] Zhao L Q, Luo D C, Wang J L, et al. An adaptive strong tracking cubature Kalman filter[J]. Journal of Beijing University of Chemical Technology:Natural Science, 2013, 40(3):98-103(in Chinese).赵利强,罗达灿,王建林,等.自适应强跟踪容积卡尔曼滤波算法[J].北京化工大学学报:自然科学版, 2013, 40(3):98-103.
[19] Guo Z, Miao L J, Zhao H S. An improved strong tracking UKF algorithm and its application in SINS initial alignment under large azimuth misalignment angle[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):203-214(in Chinese).郭泽,缪玲娟,赵洪松.一种改进的强跟踪UKF算法及其在SINS大方位失准角初始对准中的应用[J].航空学报, 2014, 35(1):203-214.
[20] Sun Y, Lu D Q, Chen Q J. An improved cubature Kalman filters based on strong tracking[J]. Journal of Huazhong University of Science and Technology:Nature Science Edition, 2013, 41:451-454(in Chinese).孙妍,鲁涤强,陈启军.一种基于强跟踪的改进容积卡尔曼滤波器[J].华中科技大学学报:自然科学版, 2013, 41:451-454.
[21] Xu S S, Lin X G, Li X F. Strong tracking adaptive square-root cubature Kalman filter algorithm[J]. Acta Electronica Sinica, 2014, 12:2394-2400(in Chinese).徐树生,林孝工,李新飞.强跟踪自适应平方根容积卡尔曼滤波算法[J].电子学报, 2014, 12:2394-2400.
[22] Shi Y P, Tang X F, Zhou X Z. Improving integrated navigation system with adaptive cubature Kalman filtering[J]. Navigation of China, 2013, 36(4):12-16(in Chinese).史岳鹏,汤显峰,周溪召.应用自适应容积卡尔曼滤波改善组合导航性能[J].中国航海, 2013, 36(4):12-16.
[23] Genz A. Fully symmetric interpolatory rules for multiple integrals over hyper-spherical surfaces[J]. Journal of Computational and Applied Mathematics, 2003, 157(1):187-195.
[24] Genz A, Monahan J A. Stochastic algorithm for high-dimensional integrals over unbounded regions with Gaussian weight[J]. Journal of Computational and Applied Mathematics, 1999, 112(1-2):71-81.
[25] Wan M J, Li P F, Li T. Tracking maneuvering target with angle-only measurements using IMM algorithm based on CKF[C]//2010 International Conference on Communications and Mobile Computing, 2010, 239:92-96.
/
〈 | 〉 |