固体力学与飞行器总体设计

阻旋栅对密封静力与动力特性影响的数值分析与实验研究

  • 孙丹 ,
  • 王双 ,
  • 艾延廷 ,
  • 王克明 ,
  • 肖忠会 ,
  • 李云
展开
  • 1. 沈阳航空航天大学 辽宁省航空推进系统先进测试技术重点实验室, 沈阳 110136;
    2. 沈阳鼓风机集团股份有限公司, 沈阳 110142

收稿日期: 2014-09-15

  修回日期: 2015-06-15

  网络出版日期: 2015-06-30

基金资助

国家自然科学基金 (11302133);航空科学基金(20140454);辽宁省教育厅基金(L2013071)

Numerical and experimental research on performance of swirl brakes for the static and dynamic characteristics of seals

  • SUN Dan ,
  • WANG Shuang ,
  • AI Yanting ,
  • WANG Keming ,
  • XIAO Zhonghui ,
  • LI Yun
Expand
  • 1. Liaoning Key Laboratory of Advanced Test Technology for Aerospace Propulsion System, Shenyang Aerospace University, Shenyang 110136, China;
    2. Shenyang Blower Works Group Co., Ltd., Shenyang 110142, China

Received date: 2014-09-15

  Revised date: 2015-06-15

  Online published: 2015-06-30

Supported by

National Natural Science Foundation of China (11302133); Aeronautical Science Foundation of China (20140454); Education Fund Item of Liaoning Province (L2013071)

摘要

密封动力特性对旋转机械转子系统稳定性影响较大,在密封入口端部设置阻旋栅是提高密封稳定性的有效方法。设计加工了无/有阻旋栅共5种密封结构,从数值分析与实验研究两个方面研究阻旋栅对密封静力与动力特性的影响规律。建立阻旋栅密封静力特性CFD理论模型,数值分析阻旋栅对密封泄漏量、切向速度以及周向压力分布的影响;应用不平衡同频激励法实验研究阻旋栅对密封动力特性的影响。研究结果表明:阻旋栅可降低密封的泄漏量,减小密封内流体的切向速度,进而降低密封内流体的周向压力差,且随着阻旋栅周向稠度与径向长度的增加,这种作用逐渐增大,这是阻旋栅抑制气流激振力的主要原因;预旋是密封产生交叉刚度的重要因素,密封的交叉刚度随进出口压比与转速的增加而增大;阻旋栅可有效降低密封的交叉刚度,增加密封的主阻尼,提高密封的稳定性。本文研究揭示了阻旋栅抑制密封气流激振力的机理,为设计阻旋栅密封提供理论依据。

本文引用格式

孙丹 , 王双 , 艾延廷 , 王克明 , 肖忠会 , 李云 . 阻旋栅对密封静力与动力特性影响的数值分析与实验研究[J]. 航空学报, 2015 , 36(9) : 3002 -3011 . DOI: 10.7527/S1000-6893.2015.0184

Abstract

The seal dynamic characteristics play an important role in rotating machinery rotor system stability. The use of swirl brakes at the inlet of seals is an effective method to improve the seal stability. The paper designs five kinds of seals without and with swirl brakes. Numerical and experimental research on the performances of swirl brakes for the static and dynamic characteristics of seals are investigated. The paper sets up the swirl brake seal static characteristics CFD numerical model to analyze the performance of swirl brakes on seal leakage, the tangential velocity and pressure distribution. Experiments are presented to identify the dynamic characteristics coefficients using an improved impedance method based on unbalanced synchronous excitation method. The results show that compared to the traditional seals, the seals with brake seals have less leakage, lower fluid tangential velocity and smaller circumferential pressure difference. With the increase of swirl brake quantity in the circumferential direction and swirl brake radial length, this effect increases gradually. It is the main reason why swirl brakes reduce flow-induced force. Preswirl is a main factor for seal cross stiffness coefficients. The seal cross stiffness coefficients increase with inlet/outlet pressure ratio and rotational speed. The swirl brakes can effectively reduce the cross-couple stiffness and increase the direct damping for a variable conditions. It is believed that the results of this study will assist in improving the design of annular seal.

参考文献

[1] He L D, Xia S B. Review on aerodynamic excitation and its elimination method in the rotor-seal system[J]. Journal of Vibration Engineering, 1999, 12(1):64-72 (in Chinese). 何立东, 夏松波. 转子密封系统流体激振及其减振技术研究简评[J]. 振动工程学报,1999, 12(1): 64-72.
[2] Cao S Q, Chen Y S. A review of modern rotor/seal dynamics[J]. Engineering Mechanics, 2009, 26(Sup. Ⅱ): 68-79 (in Chinese). 曹树谦, 陈予恕. 现代密封转子动力学研究综述[J]. 工程力学, 2009, 26(增刊Ⅱ): 68-79.
[3] Zhang W F, Yang J G, Cao H, et al. Theoretical and experimental research of tangential fluid-induced force and its influence on stability in eccentric seal[J]. Journal of Mechanical Engineering, 2011, 47(17): 92-98 (in Chinese). 张万福, 杨建刚, 曹浩, 等. 偏心密封内切向气流力及其对稳定性影响的理论与试验研究[J]. 机械工程学报, 2011, 47(17): 92-98.
[4] Li S T, Xu Q Y. Nonlinear dynamic stability of labyrinth seal-sliding bearing-rotor system[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(3): 226-229 (in Chinese). 李松涛, 许庆余. 迷宫密封-滑动轴承-转子系统的非线性动力稳定性[J]. 航空学报, 2003, 24(3): 226-229.
[5] Sun D, Yang J G, Guo R, et al. A trigonometric series expansion based method for the research of static and dynamic characteristics of eccentric seals[J]. Journal of Mechanical Science and Technology, 2014, 28(6): 2111-2120.
[6] Li Z G, Li J, Feng Z P. Leakage flow of pocket damper seal at high rotational speed[J]. Journal of Aerospace Power, 2012, 27(12): 2828-2835 (in Chinese). 李志刚, 李军, 丰镇平. 高转速袋型阻尼密封泄漏的特性[J]. 航空动力学报, 2012, 27(12): 2828-2835.
[7] He L D, Gao J J. Study on gas flow-induced vibration for a three-dimensional rotor-seal system[J]. Chinese Journal of Mechanical Engineering, 2003, 39(3): 100-104 (in Chinese). 何立东, 高金吉. 三维转子密封系统气流激振的研究[J]. 机械工程学报, 2003, 39(3): 100-104.
[8] Kirk G, Gao R. Influence of preswirl on rotordynamic characteristics of labyrinth seals[J]. Tribology Transactions, 2012, 55(3): 357-364.
[9] Muszynska A, Bently D E. Anti-swirl arrangements prevent rotor/seal instability[J]. Journal of Vibration and Acoustics, 1989, 111(2): 156-162.
[10] Memmott E A. Stability analysis and testing of a train of centrifugal compressors for high pressure gas injection[J]. Journal of Engineering for Gas Turbines and Power, 1999, 121(3): 509-514.
[11] Soto E A, Childs D W. Experimental rotordynamic coefficient results for (a) a labyrinth seal with and without shunt injection and (b) a honeycomb seal[J]. Journal of Engineering for Gas Turbines and Power, 1999, 121(1): 153-159.
[12] Brown P D, Childs D W. Measurement versus predictions of rotordynamic coefficients of a hole-pattern gas seal with negative preswirl[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(12): 122503.
[13] Kim N, Park S Y, Rhode D. Predicted effects of shunt injection on the rotordynamics of gas labyrinth seals[J]. Journal of Engineering for Gas Turbines and Power, 2003, 125(1): 167-174.
[14] Shen Q G, Li L R, Pan Y M. Flow-induced force and anti-preswirl mechanism for labyrinth seals[J]. Fluid Machinery, 1994, 22(7): 7-11 (in Chinese). 沈庆根, 李烈荣, 潘永密. 迷宫密封中的气流激振及其反旋流措施[J]. 流体机械, 1994, 22(7): 7-11.
[15] He L D. Numerical simulation of anti-swirl arrangements for suppressing rotor/seal instability[J]. Journal of Aerospace Power, 1999, 14(3): 293-333 (in Chinese). 何立东. 转子密封系统反旋流抑振的数值模拟[J]. 航空动力学报, 1999, 14(3): 293-333.
[16] Kimura T, Kawasaki S, Shimagaki M, et al. Effects of swirl brakes on the leakage flow between the casing and the shroud of a centrifugal impeller[C]//Proceedings of the ASME-JSME-KSME 2011 Joint Fluids Engineering Conference, 2011.
[17] da Soghe R, Micio M, Andreini A, et al. Numerical characterization of swirl brakes for high pressure centrifugal compressors[C]//Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, 2013.
[18] Nielsen K K, Childs D W, Myllerup C W. Experimental and theoretical comparison of two swirl brake designs[J]. Journal of Turbomachinery, 2001, 123(2): 353-358.
[19] Kwanka K. Improving the stability of labyrinth gas seals[J]. Journal of Engineering for Gas Turbines and Power, 2001, 123(2): 383-386.
[20] Childs D Q, Mclean J E, Jr, Zhang M, et al. Rotordynamic performance of a negative-swirl brake for a tooth-on-stator labyrinth seal[C]//Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, 2014.
[21] Cao H, Yang J G, Zhang W F, et al. Experimental identification method using unbalance synchronous frequency excitation for seals rotordynamic coefficients analysis[J]. Proceeding of the CSEE, 2011, 31(35): 117-122 (in Chinese). 曹浩, 杨建刚, 张万福, 等. 基于不平衡同频激励的密封动力特性系数识别[J]. 中国电机工程学报, 2011, 31(35): 117-122.

文章导航

/