卫星微振动及控制技术进展
收稿日期: 2015-05-25
修回日期: 2015-05-28
网络出版日期: 2015-06-16
基金资助
国家级项目; 上海市科委项目(14XD142300)
Progress review of satellite micro-vibration and control
Received date: 2015-05-25
Revised date: 2015-05-28
Online published: 2015-06-16
Supported by
National Level Project; STCSM Project (14XD142300)
高分辨率是卫星发展的重要方向,而制约卫星有效载荷分辨率提高的重要因素之一就是卫星微振动。因此,近年来卫星微振动及其控制问题越来越受到关注。本文从微振动的来源和特点出发,按照微振动传递路径上的控制方式,对国内外微振动领域的研究成果进行了总结。在此基础上,重点介绍了微振动控制技术在卫星微振动领域的应用,并按照微振动控制的方式,介绍了微振动被动控制、微振动主动控制以及大挠性部件微振动控制方法。结合工程实际应用,对微振动控制设计中需要注意的刚度、阻尼及多自由度耦合性问题进行了说明。同时,简单介绍了工程上常用的其他微振动控制方法。最后,对微振动控制的发展作了简短评述和展望。
孟光 , 周徐斌 . 卫星微振动及控制技术进展[J]. 航空学报, 2015 , 36(8) : 2609 -2619 . DOI: 10.7527/S1000-6893.2015.0169
High-resolution capability is an important development direction for satellite. The main negative effect on the resolution increase of imaging payload is micro-vibration. Therefore, the micro-vibration and control of satellite gains more and more attention in recent years. Beginning with the source and characteristic of the micro-vibration, the research achievements and progress of satellite micro-vibration and control are summarized based on the vibration transfer path. Then, the application of micro-vibration control technique in satellite is emphasized. According to the classification of the micro-vibration control method, the passive vibration control method and active vibration control method are introduced, as well as the large-scale flexible structure vibration control method. Meanwhile, special considerations of micro-vibration control in engineering application are given which include the stiffness analysis, damping analysis as well as the coupling consideration. Some other useful methods for micro-vibration control are also outlined and the development of micro-vibration control field is briefly commented and provided finally.
Key words: satellite; micro-vibration; vibration control; high-resolution; remote sensing
[1] Bai Z G. Technique characteristics of high-resolution No.1 satellite[J]. China Aerospace, 2013(8): 1-9 (in Chinese). 白照广. 高分一号卫星的技术特点[J]. 中国航天, 2013(8): 1-9.
[2] Vaillon L, Philippe C. Passive and active micro-vibration control for very high pointing accuracy space systems[J]. Smart Material and Structure, 1999(8): 719-728.
[3] Zhang Z, Aglietti G. Micro-vibrations induced by a cantilevered wheel assembly with a soft-suspension system[J]. AIAA Journal, 2011, 49(5): 1067-1079.
[4] Luo Q, Li D, Zhou W, et al. Dynamic modelling and observation of micro-vibrations generated by a single Gimbal control moment gyro[J]. Journal of Sound and Vibration, 2013, 332(19): 4496-4516.
[5] Kamesh D, Pandiyan R, Ghosal A. Modeling, design and analysis of low frequency platform for attenuating micro-vibration in spacecraft[J]. Journal of Sound and Vibration, 2010, 329(17): 3431-3450.
[6] Pendergast K J, Schauwecker C J. Use of a passive reaction wheel jitter isolation system to meet the advanced X-ray astrophysics facility imaging performance requirements[C]//Proceedings of the Conference on Space Telescopes and Instruments V: Part 2. Bellingham, WA: SPIE, 1998: A99-10753 01-19.
[7] Agrawal B N. Jitter control for imaging spacecraft[C]//IEEE Conferences on the 4th Recent Advances in Space Technologies International Conference. Piscataway, NJ: IEEE Press, 2009: 615-620.
[8] Xin G, Wang G, Cao D, et al. Experimental demonstration of 1.5 Hz passive isolation system for precision optical payloads[C]//International Conference on Space Optics. Toulouse: European Space Agency, 2010: 1416-1428.
[9] Maly J, Reed B. Life cycle testing of viscoelastic material for Hubble space telescope solar array 3 damper[J]. Smart Structures and Materials, 2003, 41(9): 128-140.
[10] Agrawal B N, Chen H. Algorithms for active vibration isolation on spacecraft using a Stewart platform[J]. Smart Materials and Structures, 2004, 13(4): 873-880.
[11] McMickell M, Kreider T, Hansen E, et al. Optical payload isolation using the miniature vibration isolation system (MVIS-II)[C]//Proceedings of SPIE. Bellingham, WA: SPIE, 2007, 6527: 03-01-13.
[12] Richard G C, Jeanne M S, Alok D, et al. Vibration isolation and suppression system for precision payloads in space[J]. Smart Material and Structure, 1999(8): 798-817.
[13] Shen J F, Du S, Zhou X B, et al. Design and analysis of vibration isolation for high resolution optical payloads[C]//Symposium of Domestic Conference on Mechanical Dynamics. Beijing: Mechanical Dynamics Committee of Chinese Society for Vibration Engineering, 2011: 124-129 (in Chinese). 申军烽, 杜胜, 周徐斌, 等. 高精度光学有效载荷微振动隔振系统设计与分析[C]//2011年全国机械动力学学术大会论文集. 北京:中国振动工程学会机械动力学专业委员会, 2011: 124-129.
[14] Davis T, Davis L, Sullivan J, et al. High-performance passive viscous isolator element for active/passive (hybrid) isolation[C]//Proceedings of SPIE. Bellingham, WA: SPIE, 1996: 281-292
[15] Zhang B. Active vibration control of payload imaging system[D]. Changchun: Chuangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2004 (in Chinese). 张葆. 动载体成像振动主动控制技术的研究[D]. 长春:中国科学院研究生院长春光学精密机械与物理研究所, 2004.
[16] Xu S A. Vibration isolation and decoupling technique of engine-mount on vehicles[J]. Automotive Engineering, 1995, 17(4): 198-204 (in Chinese). 徐石安. 汽车发动机弹性支承隔振的解耦方法[J]. 汽车工程, 1995, 17(4): 198-204.
[17] Liu J, Liu K. A tunable electromagnetic vibration absorber: Characterization and application[J]. Journal of Sound and Vibration, 2006, 295(3-5): 708-724.
[18] Liu G D, Ma G L, She L H. Research of maglev active vibration absorber[J]. Noise and Vibration Control, 2003, 23(6): 18-20 (in Chinese). 柳贵东, 马国利, 佘龙华. 磁悬浮主动吸振器的研究[J]. 噪声与振动控制, 2003, 23(6): 18-20.
[19] Mikulas M, Thomson M. State of the art and technology needs for large space structures[M]//New and Projected Aeronautical and Space Systems, Design Concepts, and Loads of Flight-Vehicle Materials, Structures, and Dynamics-Assessment and Future Directions. New York: ASME, 1994: 173-238.
[20] Jiang J P, Li D X. Research on finite element modeling and vibration control for smart solar array[J]. Journal of Dynamics and Control, 2009, 7(2): 164-170 (in Chinese). 蒋建平, 李东旭. 智能太阳翼有限元建模与振动控制研究[J]. 动力学与控制学报, 2009, 7(2): 164-170.
[21] Achkire Y, Bossens F, Preumont A. Active damping and flutter control of cable-stayed bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76: 913-921.
[22] Thayer D, Vagners J, von Flotow A, et al. Six-axis vibration isolation system using soft actuators and multiple sensors[C]//Proceedings of the 21st Annual AAS Rocky Mountain Guidance and Control Conference. San Diego, CA: American Astronautical Society, 1998, 98: 497-506.
[23] Preumonta A, Horodinca M, Romanescu I, et al. A six-axis single-stage active vibration isolator based on Stewart platform[J]. Journal of Sound and Vibration, 2007, 300(3-5): 644-661
[24] Hanieh A. Active isolation and damping of vibrations via Stewart platform[D]. Brussels, Belgium: ULB-Active Structures Laboratory, 2003.
[25] Siméoni D, Astru P, Miras D, et al. Design and development of IASI instrument[C]//Proceedings of SPIE. Bellingham, WA: SPIE, 2004, 5543: 208-219.
[26] Stone C, Haltery C, Medina J. The JWST integrated modeling environment[C]//42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004, 1217: 1-7.
[27] Li W P, Huang H. Space-based precision tracking and pointing Stewart platform with key technologies[J]. Aerospace Control, 2010, 28(4): 90-97 (in Chinese). 李伟鹏, 黄海. 天基精密跟瞄Stewart平台及其关键技术[J]. 航天控制, 2010, 28(4): 90-97.
/
〈 | 〉 |