基于信息一致性的无人机紧密编队集结控制
收稿日期: 2015-01-13
修回日期: 2015-05-29
网络出版日期: 2015-06-12
基金资助
国家自然科学基金(61473229);中央高校基本科研业务费专项资金(2014G2320006)
Swarm control of UAV close formation based on information consensus
Received date: 2015-01-13
Revised date: 2015-05-29
Online published: 2015-06-12
Supported by
National Natural Science Foundation of China (61473229); The Fundamental Research Funds for the Central Universities (2014G2320006)
提出了基于信息一致性的分段式无人机紧密编队集结控制策略,将集结过程分为3步:参考集结点选取和目标集结点分配、形成松散编队以及形成紧密编队。首先,以线切入预定航线的方式计算参考集结点,按照松散编队队形展开生成目标集结点,并利用基于三维距离空间的优化选择算法,将目标集结点快速、准确地分配给每架无人机。然后,使用速度一致性实现向目标集结点定点集结和向松散编队伴航集结,通过非精确的航迹控制快速形成松散编队,提高编队集结的效率。接下来,启动速度、姿态一致性来实现编队最终的精确航迹控制,并逐步压缩编队队形进入紧密编队,避免发生碰撞,完成从松散编队到紧密编队的平稳过渡,同时准确地跟踪预定航线。使用协同修正方法抑制了测量误差、协同误差和通信延迟,提高了紧密编队的稳定性和控制精度。最后,基于MATLAB平台环境对所提三维集结控制策略进行了仿真,验证了其合理性与有效性。
朱旭 , 张逊逊 , 尤谨语 , 闫茂德 , 屈耀红 . 基于信息一致性的无人机紧密编队集结控制[J]. 航空学报, 2015 , 36(12) : 3919 -3929 . DOI: 10.7527/S1000-6893.2015.0165
Sectional swarm control strategy of close unmanned aerial vehicle (UAV) formation is proposed based on information consensus. Swarm process is decomposed of three steps, including choosing reference rendezvous and allocating target rendezvous, as well as generating loose formation and generating close formation. Firstly, reference rendezvous are computed out as UAVs enter the predefined flight path along straight line and target rendezvous form as loose formation spreads out. Using optimization selection algorithm in the three-dimensional distance space, target rendezvous are assigned to each UAV quickly and accurately. Then, velocity consensus is applied to achieving stable point swarm towards target rendezvous and partner swarm towards loose formation. Swarm efficiency of the formation is improved with imprecise track control. Thirdly, close formation is formed ultimately with velocity and attitude consensus for precise track control, where transient process is smooth with gradual compression of geometrical configuration to avoid collision. Measurement errors, collaborative errors and communication delays are depressed by the synchronization method that the stability and the control accuracy of the close formation are improved. Finally, reasonableness and efficiency of the suggested three-dimensional formation swarm strategy are verified by MATLAB experiment.
Key words: unmanned aerial vehicle (UAV); close formation; consensus; swarm; track control
[1] Saban D, Whidborne J F, Cooke A K. Simulation of wake vortex effects for UAVs in close formation flight[J]. Aeronautical Journal, 2009, 113(11):727-738.
[2] Reynolds C W. Flocks, herds, and schools:A distributed behavioral model[C]//ACM SIGGRAPH 87th Conference Proceedings. New York:ACM, 1987, 6(4):25-34.
[3] Daniel K, Rohde S, Goddemeier N, et al. A communication aware steering strategy avoiding self-separation of flying robot swarms[C]//IEEE International Conference on Intelligent Systems. Piscataway, NJ:IEEE Press, 2010:254-259.
[4] Gazi V, Passino K M. Stability analysis of swarms[J]. IEEE Transactions on Automatic Control, 2003, 48(4):692-697.
[5] Olfati-Saber R, Murray R M. Distributed cooperative control of multiple vehicle formations using structural potential functions[C]//Proceedings of the 15th IFAC World Congress. Heidelberg:IFAC, 2002.
[6] Yuan L P, Chen Z J, Zhou R, et al. Decentralized control for simultaneous arrival of multiple UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(4):797-805(in Chinese).袁利平,陈宗基,周锐,等.多无人机同时到达的分散化控制方法[J].航空学报, 2010, 31(4):797-805.
[7] Easthope P F. Tracking simulated UAV swarms using particle filters[C]//IET Conference on Data Fusion and Target Tracking 2014:Algorithms and Applications, 2014, 4:1-6.
[8] Reynolds C W. Flocks, herds, and schools:A distributed behavior model[C]//Proceedings of SIGGRAPH. New York:ACM, 1987.
[9] Zong L B, Xie F, Qin S Y. Intelligent optimizing control of formation flight for UAVs based on MAS[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5):1326-1333(in Chinese).宗令蓓,谢凡,秦世引.基于MAS的无人机编队飞行智能优化控制[J].航空学报, 2008, 29(5):1326-1333.
[10] Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control, 2004, 49(9):1520-1533.
[11] Ren W, Beard R W. Consensus seeking in multi-agent systems under dynamically changing interaction topologies[J]. IEEE Transactions on Automatic Control, 2005, 50(5):655-661.
[12] Yang H Y, Zhang S Y. Consensus of multi-agent system with discrete-time[J]. Control and Decision, 2009, 24(3):413-416(in Chinese).杨洪勇,张嗣瀛.离散时间系统的多智能体的一致性[J].控制与决策, 2009, 24(3):413-416.
[13] Shang Y L. On consensus of nonlinear multi-agent systems under directed interaction topologies[C]//International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. Piscataway, NJ:IEEE Press, 2009.
[14] Tuncer C A. Convergence of consensus models with stochastic disturbances[J]. IEEE Transactions on Information Theory, 2010, 8(56):4101-4113.
[15] Chen T, Liu X, Lu W. Pinning complex networks by a single controller[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2007, 54(6):1317-1326.
[16] Ji L H. On consensus problem of multi-agent networks[D]. Chongqing:Chongqing University, 2014(in Chinese).纪良浩.多智能体网络的一致性问题研究[D].重庆:重庆大学, 2014.
[17] Fabio M. The deformed consensus protocol[J]. Automatica, 2013, 49(10):3049-3055.
[18] McLain T. Cooperative rendezvous of multiple unmanned air vehicles[C]//AIAA Guidance, Navigation and Control Conference. Reston:AIAA, 2000.
[19] Seo J, Ahn C, Kim Y. Controller design for UAV formation flight using consensus based decentralized approach[C]//AIAA Infotech Aerospace Conference. Reston:AIAA, 2009:1-11.
[20] Li S H, Wang X Y. Finite-time consensus and collision avoidance control algorithms for multiple UAVs[J]. Automatica, 2013, 49(11):3359-3367.
[21] Qu Y H, Zhu X, Zhang Y M. Cooperative control for UAV formation flight based on decentralized consensus algorithm[C]//Intelligent Robotics and Applications-5th International Conference. Berlin:Springer-Verlag, 2012:357-366.
/
〈 | 〉 |