加载速率对层间断裂韧性的影响
收稿日期: 2015-05-13
修回日期: 2015-05-17
网络出版日期: 2015-06-01
基金资助
国家自然科学基金(11372256)
Loading rate effect on interlaminar fracture toughness
Received date: 2015-05-13
Revised date: 2015-05-17
Online published: 2015-06-01
Supported by
National Natural Science Foundation of China (11372256)
虽然加载速率对层间断裂的影响已经被广泛的研究,但是现有的研究结果还未能给出加载速率对层间断裂韧性影响的明确趋势。研究人员发展了许多测量层合板复合材料以及胶接层断裂韧性的实验方法。本文的主要目的是对层间断裂韧性测量的实验方法进行综述,尤其是准静态和动态加载条件下层间起裂韧性的测量。首先介绍了准静态下Ⅰ型、Ⅱ型以及Ⅰ/Ⅱ复合型层间断裂韧性的测量方法,然后综述动态加载下层间断裂韧性的实验方法。前两部分着重介绍断裂实验中断裂参数(载荷、位移、起裂时间以及裂纹长度)的测量以及断裂韧性的计算。之后又综述了两种光学测量方法在层间断裂实验中的应用。最后将文献中加载速率对层间断裂韧性影响的实验研究结果进行了总结。
李玉龙 , 刘会芳 . 加载速率对层间断裂韧性的影响[J]. 航空学报, 2015 , 36(8) : 2620 -2650 . DOI: 10.7527/S1000-6893.2015.0148
Loading rate effect on the interlaminar fracture toughness has been extensively investigated. However, a study of the published literature indicates that considerable disagreement still exists and a clear understanding of this highly important issue has yet to be achieved. Various loading configurations and the corresponding experimental methods have been developed to date for measuring dynamic interlaminar fracture toughness of laminated composites and adhesive joints. The main purpose of this paper is to review the interlaminar fracture test, especially the technique to gain the initiation fracture toughness under quasi-static and dynamic loading conditions. Firstly, the experimental technics to measure Mode I, Mode II and Mode I/II interlaminar fracture toughness under quasi-static loading conditions are introduced. Secondly, experimental methods to study the dynamic interlaminar fracture mechanisms are reviewed. These two parts focus on the methods used for determining fracture parameters (load, displacement, initial fracture time, crack length) and fracture toughness, such as theoretical formula, FEM and strain gauges, especially for the dynamic experiments. In the third part of the paper, two main optical measurement techniques used in interlaminar fracture tests are introduced. The last part summaries many of the reported findings of the loading rate effect on the interlaminar fracture toughness.
Key words: fracture toughness; loading rate; composites; adhesive; DIC
[1] Du S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12 (in Chinese). 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12.
[2] Yi X S. Theory and application of high-performance polymer matrix composites[M]. Beijing: National Defense Industry Press, 2011: 1-20 (in Chinese). 益小苏. 先进树脂基复合材料高性能化理论与实践[M]. 北京: 国防工业出版社, 2011: 1-20.
[3] Banea M D, Da Silva L F M. Adhesively bonded joints in composite materials: an overview[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 2009, 223(1): 1-18.
[4] Chaves F J, Da Silva L F M, De Moura M F S F, et al. Fracture mechanics tests in adhesively bonded joints: a literature review[J]. The Journal of Adhesion, 2014, 90(12): 955-992.
[5] Gozluklu B, Uyar I, Coker D. Intersonic delamination in curved thick composite laminates under quasi-static loading[J]. Mechanics of Materials, 2015, 80(Part B): 163-182.
[6] Thawre M M, Pandey K N, Dubey A, et al. Fatigue life of a carbon fiber composite T-joint under a standard fighter aircraft spectrum load sequence[J]. Composite Structures, 2015, 127: 260-266.
[7] Cui H, Li Y L, Liu Y Y, et al. Numerical simulation of composites joints based on cohesive zone model[J]. Acta Materiae Compositae Sinica, 2010, 27(2): 161-168 (in Chinese). 崔浩, 李玉龙, 刘元镛, 等. 基于粘聚区模型的含填充区复合材料接头失效数值模拟[J]. 复合材料学报, 2010, 27(2): 161-168.
[8] Xu W, Chen L, Zhang Q C, et al. The mechanical behavior of interface adhesion and its characterization[J]. Scientia Sinica Technologica, 2012, 42(12): 1361-1376 (in Chinese). 许巍, 陈力, 张钱城, 等. 粘结界面力学行为及其表征[J]. 中国科学: 技术科学, 2012, 42(12): 1361-1376.
[9] Zhu L, Cui H, Li Y L, et al. Numerical simulation of the failure of composite T-joint with defects[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 287-296 (in Chinese). 朱亮, 崔浩, 李玉龙, 等. 含缺陷复合材料T型接头失效数值分析[J]. 航空学报, 2012, 33(2): 287-296.
[10] Shen Z, Zhang Z L, Wang J, et al. Characterization of damage resistance and damage tolarance behavior of composite laminats[J]. Acta Materiae Compositae Sinica, 2004, 21(5): 140-145 (in Chinese). 沈真, 张子龙, 王进, 等. 复合材料损伤阻抗和损伤容限的性能表征[J]. 复合材料学报, 2004, 21(5): 140-145.
[11] Hutchinson J W, Suo Z. Mixed mode cracking in layered materials[J]. Advances in Applied Mechanics, 1991, 29: 63-191.
[12] Suo Z, Hutchinson J. Interface crack between two elastic layers[J]. International Journal of Fracture, 1990, 43(1): 1-18.
[13] Davies G, Zhang X. Impact damage prediction in carbon composite structures[J]. International Journal of Impact Engineering, 1995, 16(1): 149-170.
[14] Blackman B R K, Hadavinia H, Kinloch A J, et al. The use of a cohesive zone model to study the fracture of fibre composites and adhesively-bonded joints[J]. International Journal of Fracture, 2003, 119(1): 25-46.
[15] He X C. A review of finite element analysis of adhesively bonded joints[J]. International Journal of Adhesion and Adhesives, 2011, 31(4): 248-264.
[16] Davallo M. Factors affecting fracture behaviour of composite materials[J]. International Journal of ChemTech Research, 2010, 2(4): 2125-2130.
[17] Compston P, Jar P Y B, Davies P. Matrix effect on the static and dynamic interlaminar fracture toughness of glass-fibre marine composites[J]. Composites Part B: Engineering, 1998, 29(4): 505-516.
[18] Tang Y, Ye L, Zhang Z, et al. Interlaminar fracture toughness and CAI strength of fibre-reinforced composites with nanoparticles-A review[J]. Composites Science and Technology, 2013, 86: 26-37.
[19] Cantwell W, Kausch H. Fracture behaviour of epoxy resins[C]//Chemistry and Technology of Epoxy Resins. Berlin: Springer Netherlands, 1993: 144-174.
[20] Frassine R, Pavan A. Viscoelastic effects on the interlaminar fracture behaviour of thermoplastic matrix composites: I. rate and temperature dependence in unidirectional PEI/carbon-fibre laminates[J]. Composites Science and Technology, 1995, 54(2): 193-200.
[21] Frassine R, Rink M, Pavan A. Viscoelastic effects on the interlaminar fracture behaviour of thermoplastic matrix composites: II. rate and temperature dependence in unidirectional PEEK/carbon-fibre laminates[J]. Composites Science and Technology, 1996, 56(11): 1253-1260.
[22] Kinloch A. Mechanics and mechanisms of fracture of thermosetting epoxy polymers[M]//Dusek K. Epoxy resins and composites I. Berlin: Springer Berlin Heidelberg, 1985: 45-67.
[23] Brunner A, Blackman B R K, Davies P. A status report on delamination resistance testing of polymer-matrix composites[J]. Engineering Fracture Mechanics, 2008, 75(9): 2779-2794.
[24] Reeder J R, Rews J H. Mixed-mode bending method for delamination testing[J]. AIAA Journal, 1990, 28(7): 1270-1276.
[25] Hojo M, Kageyama K, Tanaka K. Prestandardization study on mode I interlaminar fracture toughness test for CFRP in Japan[J]. Composites, 1995, 26(4): 243-255.
[26] Tanaka K, Kageyama K, Hojo M. Prestandardization study on mode II interlaminar fracture toughness test for cfrp in Japan[J]. Composites, 1995, 26(4): 257-267.
[27] ASTM International. ASTM D 5528 Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-feinforced polymer matrix composites[S]. West Conshohocken: ASTM International, 2007.
[28] ASTM International. ASTM D 6671/D6671M-06 Standard test method for mixed mode I-mode II interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites[S]. West Conshohocken: ASTM International, 2006.
[29] Sun C, Qian W. The use of finite extension strain energy release rates in fracture of interfacial cracks[J]. International Journal of Solids and Structures, 1997, 34(20): 2595-2609.
[30] Lin S T, Feng Z, Rowlands R E. Thermoelastic determination of stress intensity factors in orthotropic composites using the J-integral[J]. Engineering Fracture Mechanics, 1997, 56(4): 579-592.
[31] Shokrieh M, Heidari R M, Ayatollahi M. Interlaminar fracture toughness of unidirectional DCB specimens: A novel theoretical approach [J]. Polymer Testing, 2012, 31(1): 68-75.
[32] Shokrieh M, Heidari R M, Ayatollahi M. Calculation of GI for a multidirectional composite double cantilever beam on two-parametric elastic foundation[J]. Aerospace Science and Technology, 2011, 15(7): 534-543.
[33] Huang Y, Liu C, Stout M. A Brazilian disk for measuring fracture toughness of orthotropic materials [J]. Acta Materialia, 1996, 44(3): 1223-1232.
[34] Liu C, Lovato M, Stout M, et al. Measurement of the fracture toughness of a fiber-reinforced composite using the Brazilian disk geometry[J]. International Journal of Fracture, 1997, 87(3): 241-263.
[35] Mankour A, Bachir B B, Belhouari M. Brazilian disk test simulation intended for the study of interfacial cracks in bi-materials[J]. Computational Materials Science, 2008, 43(4): 696-699.
[36] Choupani N. Experimental and numerical investigation of the mixed-mode delamination in Arcan laminated specimens[J]. Materials Science and Engineering: A, 2008, 478(1): 229-242.
[37] Cognard J Y, Créa?hcadec R, Sohier L, et al. Analysis of the nonlinear behavior of adhesives in bonded assemblies-comparison of TAST and Arcan tests[J]. International Journal of Adhesion and Adhesives, 2008, 28(8): 393-404.
[38] Cognard J Y, Sohier L, Davies P. A modified Arcan test to analyze the behavior of composites and their assemblies under out-of-plane loadings[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(1): 111-121.
[39] Greer J M, Jr, Galyon D S E, Hammond M J. Some comments on the Arcan mixed-mode (Ⅰ/Ⅱ) test specimen[J]. Engineering Fracture Mechanics, 2011, 78(9): 2088-2094.
[40] Nikbakht M, Choupani N, Hosseini S R. 2D and 3D interlaminar fracture assessment under mixed-mode loading conditions[J]. Materials Science and Engineering: A, 2009, 516(1-2): 162-168.
[41] Huang Y, Wang W, Liu C, et al. Analysis of intersonic crack growth in unidirectional fiber-reinforced composites[J]. Journal of the Mechanics and Physics of Solids, 1999, 47(9): 1893-1916.
[42] Rizov V. Fracture in composites-An overview (Part Ⅰ)[J]. Journal of Theoretical and Applied Mechanics, 2012, 42(2): 3-42.
[43] Rizov V. Fracture in composites-An overview (Part Ⅱ)[J]. Journal of Theoretical and Applied Mechanics, 2012, 42(3): 23-32.
[44] de Morais A B, Rebelo C C, de Castro P, et al. Interlaminar fracture studies in Portugal: past, present and future[J]. Fatigue & Fracture of Engineering Material & Structures, 2004, 27(9): 767-773.
[45] Farmand-Ashtiani E, Cugnoni J, Botsis J. Specimen thickness dependence of large scale fiber bridging in mode I interlaminar fracture of carbon epoxy composite[J]. International Journal of Solids and Structures, 2015, 55: 58-65.
[46] Hashemi S, Kinloch A, Willams J. Corrections needed in double-cantilever beam tests for assessing the interlaminar failure of fibre-composites[J]. Journal of Materials Science Letters, 1989, 8(2): 125-129.
[47] Hashmi S, Kinloch A J, Williams J G. The analysis of interlaminar fracture in uniaxial fibre-polymer composites[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1990, 427(1872): 173-199.
[48] Hashemi S, Kinloch A, Williams J. The effects of geometry, rate and temperature on the mode I, mode II and mixed-mode I/II interlaminar fracture of carbon-fibre/poly (ether-ether ketone) composites[J]. Journal of Composite Materials, 1990, 24(9): 918-956.
[49] de Morais A B. Mode I cohesive zone model for delamination in composite beams[J]. Engineering Fracture Mechanics, 2013, 109: 236-245.
[50] Kusaka T, Hojo M, Mai Y W, et al. Rate dependence of mode I fracture behaviour in carbon-fibre/epoxy composite laminates[J]. Composites Science and Technology, 1998, 58(3-4): 591-602.
[51] Kurokawa T, Kusaka T, Shimazaki T, et al. Dynamic interlaminar fracture toughness of CFRP composite laminates[M]//Kawata K. Constitutive relation in high/very high strain rates. 1996: 217-224.
[52] Blackman B, Hadavinia H, Kinloch A, et al. The calculation of adhesive fracture energies in mode I: revisiting the tapered double cantilever beam (TDCB) test[J]. Engineering Fracture Mechanics, 2003, 70(2): 233-248.
[53] Jose S, Ramesh K R, Jana M K, et al. Intralaminar fracture toughness of a cross-ply laminate and its constituent sub-laminates[J]. Composites Science and Technology, 2001, 61(8): 1115-1122.
[54] Srawley J E. Wide rage stress intensity factor expressions for ASTM E 399 standard fracture toughness specimens[J]. International Journal of Fracture, 1976, 12(3): 475-476.
[55] Sun C T, Han C. A method for testing interlaminar dynamic fracture toughness of polymeric composites[J]. Composites Part B: Engineering, 2004, 35(6-8): 647-655.
[56] Davies P, Sims G, Blackman B, et al. Comparison of test configurations for determination of mode II interlaminar fracture toughness results from international collaborative test programme[J]. Plastics, Rubber and Composites, 1999, 28(9): 432-437.
[57] Kageyama K, Kimpara I, Suzuli T, et al. Effects of test conditions on mode II interlaminar fracture toughness of four-point ENF specimens[J]. Energy, 1999, 2(2): 1-10.
[58] Davidson B D, Sun X, Vinciquerra A J. Influences of friction, geometric nonlinearities, and fixture compliance on experimentally observed toughnesses from three and four-point bend end-notched flexure tests[J]. Journal of Composite Materials, 2007, 41(10): 1177-1196.
[59] Crews J J H, Reeder J R. A mixed-mode bending apparatus for delamination testing, NASA-TM-100662[R]. Hampton: NASA Langley Research Center, 1988.
[60] Bhashyam S, Davidson B D. Evaluation of data reduction methods[J]. AIAA Journal, 1997, 35(3): 546-552.
[61] Blackman B, Kinloch A, Ro driguez-Sanchez F S, et al. The fracture behaviour of adhesively-bonded composite joints: Effects of rate of test and mode of loading[J]. International Journal of Solids and Structures, 2012, 49(13): 1434-1452.
[62] Szekrényes A, József U J. Comparison of some improved solutions for mixed-mode composite delamination coupons[J]. Composite Structures, 2006, 72(3): 321-329.
[63] Rhee K Y, Chi C H. Determination of fracture toughness, GC of graphite/epoxy composites from a cracked lap shear (CLS) specimen[J]. Journal of Composite Materials, 2001, 35(1): 77-93.
[64] Ramkumar R L, Whitcomb J D. Characterization of mode I and mixed-mode delamination growth in T300/5208 graphite/epoxy[M]//John W S. Delamination and debon-ding of materials (A86-20626 07-24). Philadephia: ASTM Press, 1985: 315-335.
[65] Mathieu F, Aimedieu P, Guimard J M, et al. Identification of interlaminar fracture properties of a composite laminate using local full-field kinematic measurements and finite element simulations[J]. Composites Part A: Applied Science and Manufacturing, 2013, 49: 203-213.
[66] Da Silva L F M, Esteves V H C, Chaves F J P. Fracture toughness of a structural adhesive under mixed mode loadings[J]. Materialwissenschaft and Werkstofftechnik, 2011, 42(5): 460-470.
[67] Nikbakht M, Choupani N. Fracture toughness characterization of carbon-epoxy composite using Arcan specimen[J]. International Journal of Aerospace and Mechanical Engineering, 2008, 2(4): 247-253.
[68] Wang J S, Suo Z. Experimental determination of interfacial toughness curves using Brazil-nut-sandwiches[J]. Acta Metallurgica et Materialia, 1990, 38(7): 1279-1290.
[69] Suo Z. Delamination specimens for orthotropic materials[J]. Journal of Applied Mechanics, 1990, 57(3): 627-634.
[70] Rikards R, Buchholz F G, Wang H, et al. Investigation of mixed mode I/II interlaminar fracture toughness of laminated composites by using a CTS type specimen[J]. Engineering Fracture Mechanics, 1998, 61(3-4): 325-342.
[71] Manshadi B D, Farmand-Ashtiani E, Botsis J, et al. An iterative analytical/experimental study of bridging in delamination of the double cantilever beam specimen[J]. Composites Part A: Applied Science and Manufacturing, 2014, 61: 43-50.
[72] Kusaka T, Kurokawa T, Hojo M, et al. Evaluation of mode II interlaminar fracture toughness of composite laminates under impact loading[J]. Key Engineering Materials, 1997, 141-143: 477-500.
[73] Kusaka T. Experimental characterization of interlaminar fracture behavior in polymer matrix composites under low-velocity impact loading[J]. JSME International Journal Series A Solid Mechanics and Material Engineering, 2003, 46(3): 328-334.
[74] Blackman B, Dear J, Kinloch A, et al. The failure of fibre composites and adhesively bonded fibre composites under high rates of test[J]. Journal of Materials Science, 1995, 30(23): 5885-5900.
[75] Smiley A, Pipes R. Rate effects on mode I interlaminar fracture toughness in composite materials[J]. Journal of Composite Materials, 1987, 21(7): 670-687.
[76] Guo C, Sun C. Dynamic mode-I crack propagation in a carbon/epoxy composite[J]. Composites Science and Technology, 1998, 58(9): 1405-1410.
[77] Ravi-shandar K, Knauss W G. An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching[J]. International Journal of Fracture, 1984, 26(2): 141-154.
[78] Hug G, Thévenet P, Fitoussi J, et al. Effect of the loading rate on mode I interlaminar fracture toughness of laminated composites[J]. Engineering Fracture Mechanics, 2006, 73(16): 2456-2462.
[79] Daniel I, Yaniv G, Auser J. Rate effects on delamination fracture toughness of graphite/epoxy composites[M]//Marshall I H. Composite Structures 4 Volume 2 Damage Assessment and Material Evaluation. Berlin: Springer Netherlands, 1987: 258-272.
[80] Aliyu A, Daniel I. Effects of strain rate on delamination fracture toughness of graphite/epoxy[M]//John W S. Delamination and Debonding of Materials(A86-20626 07-24). Philadephia: ASTM Press, 1985: 336-348.
[81] Joannic R, Chartier B. A device for utilising the DCB test geometry at intermediate opening velocities[J]. Le Journal de Physique IV France, 2000, 10(9): 249-254.
[82] Pardo S, Baptiste D, Fitoussi J,et al. Strain rate effects on the mode I interlaminar fracture of e glass/polyester composites[J]. Strain, 501: 1561-1566.
[83] Blackman B R K, Kinloch A J, Rodriguez-Sanchez F S, et al. The fracture behaviour of structural adhesives under high rates of testing[J]. Engineering Fracture Mechanics, 2009, 76(18): 2868-2889.
[84] Colin de Verdiere M, Skordos A A, May M, et al. Influence of loading rate on the delamination response of untufted and tufted carbon epoxy non crimp fabric composites: mode I[J]. Engineering Fracture Mechanics, 2012, 96: 11-25.
[85] Thouless M D, Adams J L, Kafkalidis M S, et al. Determining the toughness of plastically deforming joints[J]. Journal of Materials Science, 1998, 33(1): 189-197.
[86] Sun C, Thouless M D, Waas A M, et al. Ductile-brittle transitions in the fracture of plastically-deforming, adhesively-bonded structures. Part I: experimental studies[J]. International Journal of Solids and Structures, 2008, 45(10): 3059-3073.
[87] Brown S W. Time and temperature-dependence of fracture energies attributed to copper/epoxy bonds [D]. Virginia: Virginia Polytechnic Institute and State University, 2004.
[88] Xu S Y, Dillard D A. Determining the impact resistance of electrically conductive adhesives using a falling wedge test[J]. IEEE Transactions on Component and Packaging Technologies, 2003, 26(3): 554-562.
[89] Simo J C. Response and failure of adhesively bonded automotive composite structures under impact loads [D]. Virginia: Virginia Polytechnic Institute and State University, 2004.
[90] Karac A, Blackman B R K, Cooper V, et al. Modelling the fracture behaviour of adhesively-bonded joints as a function of test rate[J]. Engineering Fracture Mechanics, 2011, 78(6): 973-989.
[91] Syn C J. Dynamic delamination in a glass fiber composite and interfacial fracture in a bi-material[D]. West Lafayette: Purdue University, 2008.
[92] Wu X F, Dzenis Y A. Determination of dynamic delamination toughness of a graphite-fiber/epoxy composite using Hopkinson pressure bar[J]. Polymer Composites, 2005, 26(2): 165-180.
[93] Olsson R, Thesken J C, Brandt F, et al. Investigations of delamination criticality and the transferability of growth criteria[J]. Composite Structures, 1996, 36(3-4): 221-247.
[94] Sohn M S, Hu X Z. Comparative study of dynamic and static delamination behaviour of carbon fibre/epoxy composite laminates[J]. Composites, 1995, 26(12): 849-858.
[95] Sohn M S, Hu X Z. Impact and high strain rate delamination characteristics of carbon fibre epoxy composites[J]. Theoretical and Applied Fracture Mechanics, 1996, 25(1): 17-29.
[96] Liu C, Rosakis A J, Stout M G. Dynamic fracture toughness of a unidirectional graphite/epoxy composite[C]//Proceedings of the Symposium on "Dynamic Effects in Composite Structures". New York: ASME Press, 2001: 1-12.
[97] Blackman B, Kinloch A, Wang Y, et al. The failure of fibre composites and adhesively bonded fibre composites under high rates of test[J]. Journal of Materials Science, 1996, 31(17): 4451-4466.
[98] Todo M, Nakamura T, Takashi K. Mode II interlaminar fracture behavior of fiber reinforced polyamide composites under static and dynamic loading conditions[J]. Journal of Reinforced Plastics and Composites, 1999, 18(15): 1415-1427.
[99] Todo M, Nakamura T, Mada T, et al. Measurement of dynamic interlaminar fracture toughness of FRP laminates using dynamic displacement measuring apparatus[J]. Advanced Composite Materials, 1998, 7(3): 285-297.
[100] Todo M, Nakamura T, Takahashi K. Effects of moisture absorption on the dynamic interlaminar fracture toughness of carbon/epoxy composites[J]. Journal of Composite Materials, 2000, 34(8): 630-648.
[101] Colin D V M, Skordos A A, Walton A C, et al. Influence of loading rate on the delamination response of untufted and tufted carbon epoxy non-crimp fabric composites/mode II[J]. Engineering Fracture Mechanics, 2012, 96: 1-10.
[102] Guo W G, Li Y L, Suo T. Stress wave: an introduction [M]. Xi'an: Northwestern Polytechnical University Press, 2007: 126-146 (in Chinese). 郭伟国, 李玉龙, 索涛. 应力波简明基础教程[M]. 西安: 西北工业大学出版社, 2007: 126-146.
[103] Lu W Y, Song B, Jin H. A revisit to high-rate mode-II fracture characterization of composites with Kolsky bar techniques[C]//Proceedings of the 2010 Annual Conference on Experimental and Applied Mechanics. New York: Springer New York, 2011: 277-279.
[104] Lu W Y, Song B, Jin H. Dynamic mode-II characterization of a woven glass composite[M]//Proulx T. Dynamic behavior of materials. New York: Springer New York, 2011: 455-457.
[105] Song B, Jin H, Lu W Y. Stress wave propagation in a composite beam subjected to transverse impact[C]//Proceedings of IMPLAST. Bethel: Society for Experimental Mechanics, Inc., 2010: 1-3.
[106] Adachi T, Arai M, Sakabe N, et al. Evaluation of dynamic fracture toughness of unidirectional CFRP laminates[J]. JSME International Journal Series A Solid Mechanics and Material, 2000, 43(2): 179-185.
[107] Kusaka T, Yamauchi Y, Kurokawa T. Effects of strain rate on mode II interlaminar fracture toughness in carbon-fibre/epoxy laminated composites[J]. Journal of Physics IV France, 1994, 4(8): 671-676.
[108] Lu W Y, Song B, Gwinn K. Dynamic fracture toughness test using Hopkinson bar[M]//Chalivendra V. Dynamic behavior of materials. New York: Springer New York, 2013: 499-502.
[109] Wiegand J, Hornig A, Gerlach R, et al. An experimental method for dynamic delamination analysis of composite materials by impact bending[J]. Mechanics of Advanced Materials and Structures, 2015, 22(5): 413-421.
[110] Lambros J, Rosakis A J. Dynamic crack initiation and growth in thick unidirectional graphite/epoxy plates[J]. Composites Science and Technology, 1997, 57(1): 55-65.
[111] Caimmi F, Frassine R, Pavan A. A new jig for mode II interlaminar fracture testing of composite materials under quasi-static and moderately high rates of loading[J]. Engineering Fracture Mechanics, 2006, 73(16): 2277-2291.
[112] Guimard J M, Allix O, Pechnik N, et al. Characterization and modeling of rate effects in the dynamic propagation of mode-II delamination in composite laminates[J]. International Journal of Fracture, 2009, 160(1): 55-71.
[113] Govender R, Langdon G S, Nurick G N, et al. Impact delamination testing of fibre reinforced polymers using Hopkinson pressure bars[J]. Engineering Fracture Mechanics, 2013, 101: 80-90.
[114] Tsai J L, Guo C, Sun C T. Dynamic delamination fracture toughness in unidirectional polymeric composites[J]. Composites Science and Technology, 2001, 61(1): 87-94.
[115] Becker T, Mostafavi M, Tait R, et al. An approach to calculate the J-integral by digital image correlation displacement field measurement[J]. Fatigue & Fracture of Engineering Materials & Structures, 2012, 35(10): 971-984.
[116] Upadhyaya P, Singh S, Roy S. A mechanism-based multi-scale model for predicting thermo-oxidative degradation in high temperature polymer matrix composites[J]. Composites Science and Technology, 2011, 71(10): 1309-1315.
[117] Anthony J, Paris P C. Instantaneous evaluation of J and C[J]. International Journal of Fracture, 1988, 38(1): 19-21.
[118] Gunderson J D, Brueck J F, Paris A J. Alternative test method for interlaminar fracture toughness of composites[J]. International Journal of Fracture, 2007, 143(3): 273-276.
[119] Xavier J, Oliveira M, Monteiro P, et al. Direct evaluation of cohesive law in mode I of Pinus pinaster by digital image correlation[J]. Experimental Mechanics, 2014, 54(5): 829-840.
[120] Dias G F, de Moura M F S F, Chousal J A G, et al. Cohesive laws of composite bonded joints under mode I loading[J]. Composite Structures, 2013, 106: 646-652.
[121] Pereira F A M, Morais J J L, Dourado N, et al. Fracture characterization of bone under mode II loading using the end loaded split test[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(8): 1764-1773.
[122] Dubois F, Méité M, Pop O, et al. Characterization of timber fracture using the digital image correlation technique and finite element method[J]. Engineering Fracture Mechanics, 2012, 96: 107-121.
[123] Méité M, Dubois F, Pop O, et al. Mixed mode fracture properties characterization for wood by Digital Images Correlation and Finite Element Method coupling[J]. Engineering Fracture Mechanics, 2013, 105: 86-100.
[124] Lee D, Tippur H, Kirugulige M, et al. Experimental study of dynamic crack growth in unidirectional graphite/epoxy composites using digital image correlation method and high-speed photography[J]. Journal of Composite Materials, 2009, 43(19): 2081-2108.
[125] Lee D, Tippur H, Bogert P. Quasi-static and dynamic fracture of graphite/epoxy composites: an optical study of loading-rate effects[J]. Composites Part B: Engineering, 2010, 41(6): 462-474.
[126] Blaysat B, Hoefnagels J P M, Lubineau G, et al. Interface debonding characterization by image correlation integrated with Double Cantilever Beam kinematics[J]. International Journal of Solids and Structures, 2015, 55: 79-91.
[127] Xu W, Yao X F, Liu D L. The application of coherent gradient sensing interference measurement in static fracture mechanics experiments[J]. Optical Technique, 2006, 32(2): 225-233 (in Chinese). 许蔚, 姚学锋, 刘栋梁. 相干梯度敏感干涉测量技术及在静态断裂力学实验中的应用[J]. 光学技术, 2006, 32(2): 225-233.
[128] Liu C, Rosakis A, Ellis R W, et al. A study of the fracture behavior of unindirectional fiber-reinforced composite using Coherent Gradient Sensing (CGS) interferometry[J]. International Journal of Fracture, 1998, 90(4): 355-382.
[129] Gillespie J W, Jr, Carlsson L A, Pipes R B, et al. Delamination growth in composite materials, NASA-CR-178066[R]. Washington, D.C.: NASA, 1986.
[130] Gillespie J W, Jr, Carlsson L A, Smiley A J. Rate-dependent mode I interlaminar crack growth mechanisms in graphite/epoxy and graphite/peek[J]. Composites Science and Technology, 1987, 28(1): 1-15.
[131] You H, Yum Y J. Loading rate effect on mode I interlaminar fracture of carbon/epoxy composite[J]. Journal of Reinforced Plastics and Composites, 1997, 16(6): 537-549.
[132] Mall S, Law G E, Katouzian M. Loading rate effect on interlaminar fracture toughness of a thermoplastic composite[J]. Journal of Composite Materials, 1987, 21(6): 569-579.
[133] Fracasso R, Rink M, Pavan A, et al. Rate and temperature effects on interlaminar fracture toughness in interleaved PEEK/CF composites[C]//Proceedings of the ECCM-8: European Conference on Composite Materials: Science, Technologies and Applications. Cambridge: Woodhead Publishing Ltd., 1998: 463-470.
[134] Sun C, Thouless M D, Waas A M, et al. Ductile-brittle transitions in the fracture of plastically deforming, adhesively bonded structures. Part II: numerical studies[J]. International Journal of Solids and Structures, 2008, 45(17): 4725-4738.
[135] Sun C, Thouless M D, Waas A M, et al. Rate effects in mode-II fracture of plastically deforming, adhesively bonded structures [J]. Internal Jounal of Fracture, 2009, 156(2): 111-128.
[136] Carlberger T, Biel A, Stigh U. Influence of temperature and strain rate on cohesive properties of a structural epoxy adhesive[J]. International Journal of Fracture, 2009, 155(2): 155-166.
[137] May M, Hesebeck O, Marzi S, et al. Rate dependent behavior of crash-optimized adhesives-experimental characterization, model development, and simulation[J]. Engineering Fracture Mechanics, 2015, 133: 112-137.
[138] Smiley A J, Pipes R B. Rate sensitivity of mode II interlaminar fracture toughness in graphite/epoxy and graphite/PEEK composite materials[J]. Composites Science and Technology, 1987, 29(1): 1-15.
[139] Kageyama K, Kimpara I. Delamination failures in polymer composites[J]. Materials Science and Engineering: A, 1991, 143(1-2): 167-174.
[140] Kusaka T, Hojo M, Ochiai S, et al. Rate-dependent mode II interlaminar fracture behavior of carbon-fiber/epoxy composite laminates[J]. Materials Science Research International, 1999, 5(2): 98-103.
[141] Berger L, Cantwell W J. Temperature and loading rate effects in the mode II interlaminar fracture behavior of carbon fiber reinforced PEEK[J]. Polymer Composites, 2001, 22(2): 271-281.
[142] Cantwell W. The influence of loading rate on the mode II interlaminar fracture toughness of composite materials[J]. Journal of Composite Materials, 1997, 31(14): 1364-1380.
[143] Maikuma H, Gillespie J W, Jr, Whitney J M. Analysis and experimental characterization of the center notch flexural test specimen for mode II interlaminar fracture[J]. Journal of Composite Materials, 1989, 23(8): 756-786.
[144] Blackman B R K, Dear J P, Kinloch A J, et al. The failure of fibre composites and adhesively bonded fibre composites under high rates of test[J]. Journal of Materials Science, 1996, 31(17): 4467-4477.
[145] Compston P, Jar P Y B, Burchill P J, et al. The effect of matrix toughness and loading rate on the mode-II interlaminar fracture toughness of glass-fibre/vinyl-ester composites[J]. Composites Science and Technology, 2001, 61(2): 321-333.
[146] Jiang W, Tsang F F Y, Tjons S C, et al. Loading rate dependence of mode II fracture behavior in interleaved carbon fibre/epoxy composite laminates[J]. Applied Composite Materials, 2001, 8(6): 361-369.
[147] Wade G A, Cantwell W J. Temperature and loading rate effects on the fracture behaviour of adhesively bonded GFRP Nylon-6, 6[J]. The Journal of Adhesion, 2001, 76(3): 245-264.
[148] Banea M D, de Sousa F, Da Silva L, et al. Effects of temperature and loading rate on the mechanical properties of a high temperature epoxy adhesive[J]. Journal of Adhesion Science and Technology, 2011, 25(18): 2461-2474.
/
〈 | 〉 |