电子与控制

混合小推力航天器日心悬浮轨道保持控制

  • 张楷田 ,
  • 楼张鹏 ,
  • 王永 ,
  • 陈绍青
展开
  • 中国科学技术大学自动化系, 合肥 230027
张楷田,男,硕士研究生。主要研究方向:太阳帆航天器轨道动力学与控制,E-mail:zktaf@mail.ustc.edu.cn;楼张鹏,男,博士研究生。主要研究方向:太阳帆航天器轨道动力学与控制,E-mail:louzp@mail.ustc.edu.cn;王永,男,博士,教授,博士生导师。主要研究方向:运动体控制,振动主动控制,飞行器制导与控制,机器人控制,信息融合。Tel:0551-63601506,E-mail:yongwang@ustc.edu.cn;陈绍青,男,博士,工程师。主要研究方向:振动主动控制,自适应控制,E-mail:windcsq@ustc.edu.cn

收稿日期: 2015-01-06

  修回日期: 2015-05-25

  网络出版日期: 2015-06-01

Station-keeping control of spacecraft using hybrid low-thrust propulsion in heliocentric displaced orbits

  • ZHANG Kaitian ,
  • LOU Zhangpeng ,
  • WANG Yong ,
  • CHEN Shaoqing
Expand
  • Department of Automation, University of Science and Technology of China, Hefei 230027, China

Received date: 2015-01-06

  Revised date: 2015-05-25

  Online published: 2015-06-01

摘要

针对太阳帆、太阳电混合推进航天器日心悬浮轨道保持控制问题进行了研究。为解决基于局部线性化模型设计轨道保持控制器时存在的控制精度不高、模型精确性过度依赖等问题,应用自抗扰控制(ADRC)技术设计了轨道保持控制器。首先,采用圆形限制性三体问题(CRTBP)模型推导了混合小推力航天器日心悬浮轨道动力学方程;然后,考虑系统模型不确定性和外部扰动,提出了一种基于扰动估计和补偿的轨道保持控制方法;最后,数值仿真表明存在系统模型不确定性、初始入轨误差及地球轨道偏心率扰动等因素的情况下,所设计的控制器仅需很小的速度增量即可实现高精度的日心悬浮轨道保持控制。

本文引用格式

张楷田 , 楼张鹏 , 王永 , 陈绍青 . 混合小推力航天器日心悬浮轨道保持控制[J]. 航空学报, 2015 , 36(12) : 3910 -3918 . DOI: 10.7527/S1000-6893.2015.0138

Abstract

In this paper, station-keeping of heliocentric displaced orbits using a hybrid of solar sail and solar electric propulsion is investigated. In order to avoid the problem of low control precision and excessive dependence on model accuracy, which occurs when controllers are designed according to locally linearized models, a station-keeping control method based on active disturbance rejection control (ADRC) technique is proposed. Firstly, the dynamic model of a spacecraft using hybrid low-thrust propulsion in the heliocentric displaced orbit is derived based on the circular restricted three-body problem (CRTBP). Secondly, considering unmodelled dynamic and external disturbance, a station-keeping control method based on disturbance estimation and compensation is then presented. Finally, numerical simulations show that in the presence of system uncertainties, initial injection errors, and perturbations of the eccentric nature of the Earth's orbit, high station-keeping control precision can be achieved with relative small velocity increment.

参考文献

[1] McInnes C R, McDonald A, Simmons J, et al. Solar sail parking in restricted three-body system[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(2):399-406.
[2] Baoyin H X, McInnes C R. Solar sail equilibria in the elliptical restricted three-body problem[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(3):538-543.
[3] Baoyin H X, McInnes C R. Solar sail halo orbits at the sun-earth artificial L1 point[J]. Celestial Mechanics and Dynamical Astronomy, 2006, 94(2):155-171.
[4] Gong S P, Li J F, Baoyin H X. Analysis of displaced solar sail orbits with passive control[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3):782-785.
[5] Heiligers J, McInnes C R, Biggs J D, et al. Displaced geostationary orbits using hybrid low-thrust propulsion[J]. Acta Astronautica, 2012, 71:51-67.
[6] Simo J, McInnes C R. Designing displaced lunar orbits using low-thrust propulsion[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1):259-265.
[7] McKay R, Macdonald M, Biggs J, et al. Survey of highly non-Keplerian orbits with low-thrust propulsion[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(3):645-666.
[8] McInnes C R. Passive control of displaced solar sail orbits[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(6):975-982.
[9] Bookless J, McInnes C. Dynamics and control of displaced periodic orbits using solar-sail propulsion[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(3):527-537.
[10] Simo J, McInnes C R. Feedback stabilization of displaced periodic orbits:Application to binary asteroids[J]. Acta Astronautica, 2014, 96:106-115.
[11] Gong S P, Baoyin H X, Li J F. Solar sail formation flying around displaced solar orbits[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(4):1148-1152.
[12] Qian H, Zheng J H, Yu X Z, et al. Dynamics and control of displaced orbits for solar sail spacecraft[J]. Chinese Journal of Space Science, 2013, 33(4):458-464(in Chinese).钱航,郑建华,于锡峥,等.太阳帆航天器悬浮轨道动力学与控制[J].空间科学学报, 2013, 33(4):458-464.
[13] Zhang H, Zhu M, Zhou J L, et al. Station-keeping control of solar sail Lissajous orbit with attitude angles amplitude constraint[J]. Chinese Journal of Space Science, 2014, 34(6):872-880(in Chinese).张辉,朱敏,周建亮,等.姿态角幅值约束下的太阳帆Lissajous轨道保持控制[J].空间科学学报, 2014, 34(6):872-880.
[14] Zhang J, Wang T S. Coupled attitude-orbit control of flexible solar sail for displaced solar orbit[J]. Journal of Spacecraft and Rockets, 2013, 50(3):675-685.
[15] Luo C, Zheng J H, Gao D. Study on orbit dynamics and control of solar-sail spacecraft[J]. Journal of Astronautics, 2009, 30(6):2111-2117(in Chinese).罗超,郑建华,高东.太阳帆航天器的轨道动力学和轨道控制研究[J].宇航学报, 2009, 30(6):2111-2117.
[16] Gong S P. Study on dynamics and control of sail-craft[D]. Beijing:Tsinghua University, 2009(in Chinese).龚胜平.太阳帆航天器动力学与控制研究[D].北京:清华大学, 2009.
[17] Liu L, Hou X Y. Dynamics in deep space exploration[M]. Beijing:Publishing House of Electronic Industry, 2012:50-51(in Chinese).刘林,候锡云.深空探测器轨道力学[M].北京:电子工业出版社, 2012:50-51.
[18] Han J Q. Active disturbance rejection controller and its applications[J]. Control and Decision, 1998, 13(1):19-23(in Chinese).韩京清.自抗扰控制及其应用[J].控制与决策, 1998, 13(1):19-23.
[19] Kulkarni J E, Campbell M E, Dullerud G E. Stabilization of spacecraft flight in halo orbits:An H approach[J]. IEEE Transactions on Control Systems Technology, 2006, 14(3):572-578.
[20] McKay R J, Macdonald M, Bosquillon de Frescheville F, et al. Non-keplerian orbits using low thrust, high ISP propulsion systems[C]//Proceedings of the 60th International Astronautical Congress. Paris:IAF, 2009.
[21] Peng H, Zhao J, Wu Z, et al. Optimal periodic controller for formation flying on libration point orbits[J]. Acta Astronautica, 2011, 69(7):537-550.

文章导航

/