固体力学与飞行器总体设计

脉冲子结构与有限元刚-弹混合连接的子结构方法

  • 刘莉 ,
  • 陈树霖 ,
  • 周思达 ,
  • 陈昭岳
展开
  • 北京理工大学 宇航学院 飞行器动力学与控制教育部重点实验室, 北京 100081
陈树霖 男, 博士研究生。主要研究方向: 飞行器结构动力学分析。Tel: 010-68913290 E-mail: c.shulin@live.cn;周思达 男, 博士, 讲师, 硕士生导师。主要研究方向: 飞行器结构动力学分析、时变结构动力学系统分析与辨识。Tel: 010-68918752 E-mail: zhousida@bit.edu.cn;陈昭岳 男, 博士研究生。主要研究方向: 飞行器结构动力学分析。Tel: 010-68913290 E-mail: 350439195@bit.edu.cn

收稿日期: 2015-04-27

  修回日期: 2015-05-17

  网络出版日期: 2015-05-29

A substructure method for coupling impulse response functions with finite element models via rigid-elastic joints

  • LIU Li ,
  • CHEN Shulin ,
  • ZHOU Sida ,
  • CHEN Zhaoyue
Expand
  • Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

Received date: 2015-04-27

  Revised date: 2015-05-17

  Online published: 2015-05-29

摘要

航天器结构的日益复杂庞大对系统级的动力学建模仿真以及进一步的结构优化提出了巨大挑战。为提高动力学求解效率,通常引用动态子结构方法。本文利用适于处理瞬态冲击问题的脉冲子结构(IBS)方法,并对其进行改进,将基于脉冲响应函数(IRF)的子结构与有限元建立的子结构综合,同时考虑刚性、弹性以及刚-弹混合连接情形下的子结构综合格式。通过3个数值算例,验证了方法的正确性。最后将刚-弹混合连接下的子结构方法应用到月球探测器软着陆的动态响应预测,结果表明该方法适于对月球探测器软着陆动态响应进行高精度快速预测,并且可以应用于月球探测器的局部动力学结构优化。

本文引用格式

刘莉 , 陈树霖 , 周思达 , 陈昭岳 . 脉冲子结构与有限元刚-弹混合连接的子结构方法[J]. 航空学报, 2015 , 36(8) : 2670 -2680 . DOI: 10.7527/S1000-6893.2015.0142

Abstract

The complexity and size of spacecraft have brought great difficulties and challenges to system level dynamics simulation and design optimization. In order to improve the computing efficiency, dynamic substructuring method is introduced. This paper uses the impulse-based substructuring (IBS) method, an efficient approach in transient dynamic simulating, and adapts the original methods by coupling impulse response functions (IRF) with finite element models through rigid-elastic joints. The validity of these coupling ways which include rigid-only, elastic-only and rigid-elastic joints is separately demonstrated by three numerical examples. Besides, the coupling way by rigid-elastic joints is applied to the transient dynamic simulation of soft landing of the lunar lander. The results show that this method is suitable for the simulation of soft landing for lunar landers with great efficiency and precision. Furthermore, this method can be applied to the lunar lander's local structure optimization.

参考文献

[1] Schwarz H A. Gesammelte mathematische abhandlungen[M]. Berlin: Springer-Verlag, 1890: 133-143.
[2] Biot M A. Coupled oscillations of aircraft engine-propeller systems[J]. Journal of the Aeronautical Sciences, 1940, 7(9): 376-382.
[3] Bishop R E D, Johnson D C. The mechanics of vibration[M]. Cambridge: Cambridge University Press, 1960: 9-45.
[4] Rubin S. Mechanical immittance and transmission matrix concepts[J]. The Journal of the Acoustical Society of America, 1967, 41(5): 1171-1179.
[5] Jetmundsen B, Bielawa R L, Flannelly W G. Generalized frequency domain substructure synthesis[J]. Journal of the American Helicopter Society, 1988, 33(1): 55-64.
[6] Gordis J H. Structural synthesis in the frequency domain: A general formulation[J]. Shock and Vibration, 1994, 1(5): 461-471.
[7] Benfield A W, Hrude F R. Vibration analysis of structures by component mode[J]. AIAA Journal, 1971, 9(7): 1255-1261.
[8] Rubin S. Improved component-mode representation for structural dynamic analysis[J]. AIAA Journal, 1975, 13(8): 995-1006.
[9] Wang W L, Du Z R, Chen K Y. A short commentary for modal synthesis techniques and a novel improvement[J]. Acta Aeronautica et Astronautica Sinica, 1979(3): 32-51 (in Chinese). 王文亮, 杜作润, 陈康元. 模态综合技术短评和一种新的改进[J]. 航空学报, 1979(3): 32-51.
[10] Zheng Z C. Dynamic analysis of nonlinear systems by modal synthesis techniques[J]. Applied Mathematics and Mechanics, 1985, 4(4): 563-572 (in Chinese). 郑兆昌. 非线性系统动力分析的模态综合技术[J]. 应用数学和力学, 1985, 4(4): 563-572.
[11] Rixen D J. A dual craig-bampton method for dynamic substructuring[J]. Journal of Computational and Applied Mathematics, 2004, 168(1-2): 383-391.
[12] Dong W L, Liu L, Zhou S D. Model reduction of soft landing dynamics for lunar lander with local nonlinearities[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1319-1328 (in Chinese). 董威利, 刘莉, 周思达. 含局部非线性的月球探测器软着陆动力学降阶分析[J]. 航空学报, 2014, 35(5): 1319-1328.
[13] Rixen D J. A substructuring technique based on measured and computed impulse response functions of components[C]//The 24th International Conference on Noise and Vibration Engineering (ISMA 2010). Leuven, Belgium: Katholieke Universiteit Leuven, 2010: 1939-1954.
[14] Dong W L, Liu L, Zhou S D. Acceleration response prediction for lunar lander using time-domain substructure methods[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 848-856 (in Chinese). 董威利, 刘莉, 周思达. 月球探测器加速度响应预测的时域子结构方法[J]. 航空学报, 2014, 35(3): 848-856.
[15] Rixen D J, Haghighat N. Truncating the impulse responses of substructures to speed up the impulse-based substructuring[C]//30th IMAC. New York: Springer, 2012: 137-148.
[16] van der Seijs M V, Rixen D J. Efficient impulse based substructuring using truncated impulse response functions and mode superposition[C]//International Conference on Noise and Vibration Engineering 2012 (ISMA 2012). Leuven, Belgium: Katholieke Universiteit Leuven, 2012: 3487-3499.
[17] van der Valk P L C, Rixen D J. An effective method for assembling impulse response functions to linear and non-linear finite element models[C]//30th IMAC. New York: Springer, 2012: 123-135.
[18] van der Valk P L C, Rixen D J. An impulse based substructuring method for coupling impulse response functions and finite element models[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 275: 113-137.
[19] Dong W L, Liu L, Zhou S D, et al. Substructure synthesis in time domain with rigid-elastic hybrid joints[J]. AIAA Journal, 2015, 53(2): 504-509.
[20] Jin R, Chen W, Simpson T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization, 2001, 23(1): 1-13.
[21] Otto O R, Laurenson R M, Melliere R A, et al. Analyses and limited evaluation of payload and legged landing system structures for the survivable soft landing of instrument payloads, NASA CR-111919[R]. Washington, D. C.: NASA, 1971.

文章导航

/