特征趋势分区Gauss伪谱法解再入轨迹规划问题
收稿日期: 2014-09-15
修回日期: 2015-05-04
网络出版日期: 2015-05-25
基金资助
国家自然科学基金 (61473226)
Reentry trajectory planning method based on Gauss pseudospectral with characteristics of trend partition
Received date: 2014-09-15
Revised date: 2015-05-04
Online published: 2015-05-25
Supported by
National Natural Science Foundation of China (61473226)
针对强约束下的滑翔再入轨迹规划问题,采用基于特征趋势分区的Gauss伪谱法将连续最优问题转换为多个并行非线性规划问题并对其进行求解。针对传统拟谱方法在处理状态受限时,非平滑最优控制解难以收敛的问题,引入Sobolev空间证明了分区并行的收敛性和一致性。基于Letts准则提出了非连续特征趋势提取方法,通过分析离散点配置导数进行了可变分区的迭代设定,并结合导数变化趋势给出了各分区的动态配点数。利用不同阶次的多项式进行精度逼近,保证了在考虑多项强约束条件下弹道规划的可行解获取。结合状态分区的策略进行离线状态的分解,提高了计算效率。最终针对典型的再入应用进行了轨迹规划应用。仿真结果表明,所提出的方法可有效应对多种约束条件,能够根据飞行器的气动能力规划出可行的轨迹,过程条件满足约束,且可适应气动力20%的拉偏范围。
呼卫军 , 卢青 , 常晶 , 周军 . 特征趋势分区Gauss伪谱法解再入轨迹规划问题[J]. 航空学报, 2015 , 36(10) : 3338 -3348 . DOI: 10.7527/S1000-6893.2015.0115
A new Gauss pseudospectral method based on the characteristics of trend partition which transformed continuous optimal problem into parallel nonlinear programming problem was presented in this work solving the problem of reentry trajectory planning with strong state constraints. Tradition pseudospectral method was hard to get convergent non smooth optimal control solutions with state constraint. So sobolev space was introduced to prove the convergence and consistency of partition parallel spectral method. Extraction method of non-continuous feature trend was then developed to solve the problem that non-continuous optimal control solution is difficult to convergence in the case of state constraint. This new method iteratively set the variable partition through analysis of discrete point collocation derivative. Then different partition dynamic allocation point number was computed using the derivative tendency. High-precision polynomial approximation with different orders was used to ensure the acquisition of feasible solution considering the multi constraint conditions. The computational efficiency is effectively improved by off-line partition state confirming. The final application in reentry trajectory planning shows the effectiveness of the proposed approach when facing uncertain accidence and terminal restricts condition and indicate that this method can accommodate 20% pneumatic bias and ensure the terminal precision.
[1] Hunington G T. Advancement and analysis of a guass pseuospectral transcription for optimal control[D]. Cambridge: Massachusetts Institute of Technology, 2007.
[2] Benson D A. A Gauss pseudospectral transcription for optimal control[D]. Cambridge: Massachusetts institute Technoligy, 2004.
[3] Sun Y, Zhang M R, Li H. Now costato estimation of Gauss pseudospectral method for nonlinear optimal control problem[C]//Proceeding of the 2011 International Workshop on Engineering Application Research. Hangzhou, China: IEIT, 2011: 31-36.
[4] Gong Q, Fahroo F, Ross I M. Spectral algorithm for pseudospectral methods in optimal control[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3): 460-471.
[5] Yong E M, Tang G J, Chen L. Rapid trajectory optimization for hypersonic reentry vehicle via Guass pseudospectral method[J]. Journal of Astronautics, 2008, 29(6): 1766-1772 (in Chinese). 雍恩米, 唐国金, 陈磊. 基于Guass伪谱方法的高超声速飞行器再入轨迹快速优化[J]. 宇航学报, 2008, 29(6): 1766-1772.
[6] Tong K W, Zhou J P, He L S. Legendre-Gauss pseudospectral method for solving optimal control problem[J]. Acta Aeronautics et Astronautics Sinica, 2008, 29(6): 1531-1536 (in Chinese). 童科伟, 周建平, 何麟书. Legendre-Guass拟谱法求解最优控制问题[J]. 航空学报, 2008, 29(6): 1531-1536.
[7] Darby G L, Hager W W, Rao A V. Direct trajectory optimization using a variable low-order adaptive pseudospectral method[J]. Journal of Spacecraft and Rockets, 2011, 48(3): 433-445.
[8] Qi G, Ross I M. Autonomous pseudospectral knotting methods for space mission optimizaition[C]//Proceeding of the AAS/AIAA Space Flight Mechanics Meeting. Reston: AIAA, 2006: 779-794.
[9] Jain S, Tsiotras P. Trajectory optimization using multiresolution techniques[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5): 1424-1436.
[10] Darby G L, Hager W W, Rao A V. An hp-adaptive pseudospectral method for solving optimal problems[J]. Optimal Control Applications and Methods, 2011, 32(4): 476-502.
[11] Qin T H, Ma H P. An adaptive pseudospectral method for solving a class of optimal control problems[J]. Information and Control, 2012, 41(5): 583-589 (in Chinese). 秦廷华, 马和平. 解一类最优控制问题的一种自适应拟谱方法[J]. 信息与控制, 2012, 41(5): 583-589.
[12] Ross I M, Fahroo F. A perspective on methods for trajectory optimization[C]//Proceedings of AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Reston: AIAA, 2007: 831-839.
[13] Lu P, Pan B F. Highly constrained optimal launch ascent guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(2): 404-414.
[14] Kameswaran S, Biegler L T. Convergence rates for direct transcription of optimal control problems using collocation at radau points[J]. Computational Optimization and Applications, 2008, 41(1): 81-126.
[15] Fahroo F, Ross I M. Direct trajectory optimization by Chebshev pseudospectral method[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(1): 160-166.
[16] Zong Q, Tian B L, Dou L Q. Ascent phase trajectory optimization for near space vehicle based on Gauss pseudospectral method[J]. Journal of Astronautics, 2010, 31(7): 1775-1781 (in Chinese). 宗群, 田栢苓, 窦立谦. 基于Gauss伪谱法的临近空间飞行器上升段轨迹优化[J]. 宇航学报, 2010, 31(7): 1775-1781.
[17] Zhang Y, Zhang W P, Chen J, et al. Air-to-ground weapon delivery trajectory planning for UCACs using Gauss pseudospectrl method[J]. Acta Aeronautics et Astronautics Sinica, 2011, 32(7): 1240-1251 (in Chinese). 张煜, 张万鹏, 陈璟, 等. 基于Gauss伪谱法的UCACs对地攻击武器投放轨迹规划[J]. 航空学报, 2011, 32(7): 1240-1251.
[18] Shui Z S, Zhou J, Ge Z L. Online predictor-corrector reentry guidance law based on Gauss pseudospectral method[J]. Journal of Astronautics, 2011, 32(6): 1249-1255 (in Chinese). 水尊师, 周军, 葛致磊. 基于高斯伪谱方法的再入飞行器预测校正制导方法研究[J]. 宇航学报, 2011, 32(6): 1249-1255.
[19] Cao X Q. Optimal control for a chaotic system by means of Gauss pseudospectral method[J]. Acta Physica Sinica 2013, 62(23): 67-74 (in Chinese). 曹小群. 基于高斯伪谱方法的混沌系统最优控制[J]. 物理学报, 2013, 62(23): 67-74.
[20] Wang P, Tian X M. Partitioning and simultaneous strategy for dynamic optimization by Gauss pseudo-spectral method[J]. Control and Decision, 2011, 26(11): 1749-1752 (in Chinese). 王平, 田学民. 基于高斯伪谱法的分区联立动态优化策略[J]. 控制与决策, 2001, 26(11): 1749-1752.
/
〈 | 〉 |