带周向单槽的低速轴流压气机失速起始过程
收稿日期: 2015-01-12
修回日期: 2015-05-13
网络出版日期: 2015-05-25
基金资助
国家自然科学基金(51106153,51176188)
Prestall process in low-speed axial compressor with single circumferential casing groove
Received date: 2015-01-12
Revised date: 2015-05-13
Online published: 2015-05-25
Supported by
National Natural Science Foundation of China (51106153, 51176188)
为了深入认识周向槽轴向位置对压气机失速机制的影响规律,针对某叶尖敏感的低速单转子压气机开展实验测量与数值模拟相结合的研究。实验与计算结果均表明,位于叶片弦长中部的周向单槽扩稳效果最好,而位于叶片前缘下游20%~30%轴向弦长位置的周向单槽扩稳效果最差。进一步分析了利用非定常、多通道计算模型获得的数值结果,发现对于光壁机匣和扩稳效果最好的周向单槽机匣,泄漏流与主流交界面在近失速工况下到达叶片前缘位置,压气机通过突尖型失速先兆进入失速状态;对于扩稳效果最差的周向单槽机匣,泄漏流与主流交界面在近失速工况下仍位于叶片通道内部距离叶片前缘20%的轴向弦长位置,压气机经历了由准模态型失速先兆向突尖型失速先兆转换的失速起始过程。
高立朋 , 杜娟 , 李继超 , 林峰 , 聂超群 . 带周向单槽的低速轴流压气机失速起始过程[J]. 航空学报, 2015 , 36(12) : 3822 -3831 . DOI: 10.7527/S1000-6893.2015.0136
In order to further understand the impact of circumferential casing groove axial location on stall mechanism of compressor, a tip sensitive low-speed single rotor is tested and numerically simulated. The results show that the location with the maximum stall margin improvement (SMI) is near the mid-chord of blade tip and the location with the minimal SMI is around 20%-30% axial tip chord aft of blade leading edge. Numerical results are acquired from an unsteady multi-passage numerical scheme. For smooth casing and the optimal groove, the interface between the tip leakage flow and main flow reaches blade leading edge under the near stall condition and spike stall inception appears; but for the worst groove, the interface is away from blade leading edge under the near stall condition, around 20% axial tip chord aft of blade leading edge, and a conversion between quasi-modal stall inception and spike stall inception is captured.
[1] Fujita H, Takata H. A study of configurations of casing treatment for axial flow compressors[J]. Bulletin of JSME, 1984, 27(230):1675-1681.
[2] Bailey E E. Effect of grooved casing treatment on the flow range capability of a single-stage axial-flow compressor, TM X-2459[R]. Ohio:NASA, 1972.
[3] Shabbir A, Adamczyk J J. Flow mechanism for stall margin improvement due to circumferential casing grooves on axial compressors[J]. Journal of Turbomachinery, 2005, 127(4):708-717.
[4] Lu X G, Chu W L, Zhu J Q, et al. Mechanism of the interaction between casing treatment and tip leakage flow in a subsonic axial compressor, GT2006-90077[R]. Barcelona:ASME, 2006.
[5] Müller M W, Schiffer H-P, Hah C. Effect of circumferential grooves on the aerodynamic performance of an axial single-stage transonic compressor, GT2007-27365[R]. Montreal:ASME, 2007.
[6] Houghton T, Day I. Enhancing the stability of the subsonic compressor using casing grooves[J]. Journal of Turbomachinery, 2011, 133(2):021007-1-021007-11.
[7] Houghton T, Day I. Stability enhancement by casing grooves:the importance of stall inception mechanism and solidity[J]. Journal of Turbomachinery, 2012, 134(2):021003-1-021003-8.
[8] Moore F K, Greitzer E M. A theory of post-stall transients in axial compression systems:Part I-Development of equations[J]. ASME Journal of Turbomachinery, 1986, 108(1):68-76.
[9] McDougall N M, Cumpsty N A, Hynes T P. Stall inception in axial compressors[J]. ASME Journal of Turbomachinery, 1990, 112(1):116-123.
[10] Day I J. Stall inception in axial flow compressors[J]. ASME Journal of Turbomachinery, 1993, 115(1):1-9.
[11] Camp T R, Day I J. A study of spike and modal stall phenomena in a low-speed axial compressor[J]. ASME Journal of Turbomachinery, 1998, 120(3):393-401.
[12] Hoying D A, Tan C S, Vo H D, et al. Role of blade passage flow structures in axial compressor rotating stall inception[J]. Journal of Turbomachinery, 1999, 121(4):735-742.
[13] Saathoff H, Stark U. Tip clearance flow induced endwall boundary layer separation in a single-stage axial-flow low-speed compressor, GT2000-0501[R]. Munich:ASME, 2000.
[14] Vo H D. Role of tip clearance flow on axial compressor stability[D]. Massachusetts:Massachusetts Institute of Technology, 2001.
[15] Hah C, Bergner J, Schiffer H-P. Short length-scale rotating stall inception in a transonic axial compressor-criteria and mechanisms, GT2006-90045[R]. Barcelona:ASME, 2006.
[16] Brouckaert J F, Van de Wyer N, Farkas B, et al. Unsteady pressure measurements in a single stage low pressure axial compressor:Tip vortex flow and stall inception, GT2009-59771[R]. Orlando:ASME, 2009.
[17] Lin F, Li M L, Chen J Y. Long-to-short length scale transition:A stall inception phenomenon in an axial compressor with inlet distortion, GT2005-68656[R]. Reno-Tahoe:ASME, 2005.
[18] Bennington M A, Cameron J D, Morris S C, et al. Investigation of tip-flow based stall criteria using rotor casing visualization, GT2008-51319[R]. Berlin:ASME, 2008.
[19] Du J, Lin F, Chen J Y, et al. Numerical study on the influence mechanism of inlet distortion on the stall margin in a transonic axial rotor[J]. Journal of Thermal Science, 2012, 21(3):209-214.
[20] Li J C, Lin F, Wang S C, et al. Extensive experimental study of circumferential single groove in an axial flow compressor, GT2014-26859[R]. Düsseldorf:ASME, 2014.
/
〈 | 〉 |