若干周期性复合材料结构数学均匀化方法的计算精度
收稿日期: 2014-05-21
修回日期: 2014-09-05
网络出版日期: 2015-05-29
基金资助
国家自然科学基金 (11172028, 11372021);高等学校博士学科点专项科研基金(20131102110039);北京航空航天大学基本科研业务费-博士研究生创新基金(YWF-14-YJSY-019)
Accuracy analysis of mathematical homogenization method for several periodical composite structure
Received date: 2014-05-21
Revised date: 2014-09-05
Online published: 2015-05-29
Supported by
National Natural Science Foundation of China (11172028, 11372021); Research Fund for the Doctoral Program of Higher Education of China (20131102110039); Innovation Foundation of BUAA for PhD Graduates (YWF-14-YJSY-019)
数学均匀化方法(MHM)一般需要通过有限元方法(FEM)来实现,摄动阶次和单元阶次直接影响计算结果。在解耦格式中,各阶摄动位移是相应阶次的影响函数和均匀化位移导数的乘积。单元阶次的选取取决于影响函数和均匀化位移的精度要求,而摄动阶次的选取则主要依赖于虚拟载荷的性质和均匀化位移各阶导数的计算精度;针对周期性复合材料杆的静力学问题,在施加不同阶次的载荷时,通过选择合适阶次的单元和摄动阶次得到了精确解。使用类似的方法研究了2D周期性复合材料静力学问题,指出了四边固支作为周期性单胞边界条件以及宏观位移求导精度对计算结果将有很大的影响。强调了二阶摄动对数学均匀化方法计算精度的作用;在数值结果中,应用最小势能原理评估了各阶摄动数学均匀化方法的计算精度,数值比较结果验证了结论的正确性。
邢誉峰 , 陈磊 . 若干周期性复合材料结构数学均匀化方法的计算精度[J]. 航空学报, 2015 , 36(5) : 1520 -1529 . DOI: 10.7527/S1000-6893.2014.0216
The mathematical homogenization method (MHM) is generally implemented by finite element method (FEM) and its calculating accuracy depends completely on the order of perturbation and finite element, the perturbed displacements in uncoupled form are defined as the multiplications of influence functions and the derivatives of homogenized displacements. The order of elements depends on the accuracy requirements of influence function and homogenized displacements while the order of perturbations depends mainly on the accuracy of different-order derivatives of homogenized displacements and the properties of quasi loads. For the static problems of periodical composite rod, the exact solutions can be obtained using correct order of MHM and finite element for the static problem of periodic composite rod subjected to different order of loads. Then two-dimensional (2D) periodical composite structures are explored similarly,and the clamped boundary condition of periodical unite cell and the derivatives of homogenized displacements have great effects on the calculation accuracy of MHM. The effect of second-order perturbations is stressed for the accuracy of MHM. Finally, the potential energy functional is used to evaluate the accuracy of MHM and numerical comparisons validate the conclusions.
[1] Berthelot J M. Composite materials: mechanical behavior and structural analysis[M]. New York: Springer, 1999: 27-342.
[2] Kalidindi S R, Abusafieh A. Longitudinal and transverse moduli and strengths of low angle 3D braided composites[J]. Journal of Composite Materials, 1996, 30(8): 885-905.
[3] Babuška I. Solution of interface problems by homogenization: Parts I and II[J]. SIAM Journal on Mathmatical Analysis, 1976, 7: 603-645.
[4] Benssousan A, Lions J L. Asymptotic analysis for periodic structures[M]. Amsterdam: Elsevier, 1978.
[5] Strouboulis T, Babuška I, Copps K. The generalized finite element method: an example of its implementation and illustration of its performance[J]. International Journal for Numerical Methods in Engineering, 2000, 47(8): 1401-1417.
[6] Babuška I, Osborn J. Generalized finite element methods: their performance and their relation to mixed methods[J]. SIAM Journal on Numerical Analysis, 1983, 20: 510-536.
[7] Hou T, Wu X. A multiscale finite element method for elliptic problems in composite materials and porous media[J]. Journal of Computational Physics, 1997, 134(1):169-189.
[8] Hou T, Wu X, Cai Z. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients[J]. Mathematics of Computation, 1999, 68(227): 913-943.
[9] Engquis W E B. The heterogeneous multiscale methods[J]. Communication in Mathematical Sciences, 2003,1(1): 87-132.
[10] Engquist W E B, Li X T, Ren W Q, et al. Heterogeneous multiscale methods: a review[J]. Communications in Computational Physics, 2007, 2(3): 367-450.
[11] Xing Y F, Yang Y. An eigenelement method of periodical composite structures[J]. Composite Structures, 2011, 93: 502-512.
[12] Xing Y F, Yang Y, Wang X M. A multiscale eigenelement method and its application to periodical composite structures[J]. Composite Structures, 2010, 92: 2265-2275.
[13] Oleinik O, Shamaev A V, Yosifian G A. Mathematical problems in elasticity and homogenization[M]. Amsterdam: Elsevier, 1992.
[14] Guedes J M, Kikuchi N. Pre and post processing for materials based on the homogenization method with adaptive finite element methods[J]. Computer Methods in Applied Mechanics and Engineering, 1990, 83: 143-198.
[15] Hassani B, Hinton E. A review of homogenization and topology optimization I—homogenization theory for media with periodic structure[J]. Computers and Structures, 1998, 69: 707-717.
[16] Takano N, Zako M, Ishizono M. Multi-scale computational method for elastic bodies with global and local heterogeneity[J]. Journal of Computer-Aided Material Design, 2000, 7(2): 111-132.
[17] Fish J, Yuan Z. Multiscale enrichment based on partition of unity[J]. International Journal for Numerical Methods in Engineering, 2005, 62(10): 1341-1359.
[18] Bourgat J F. Numerical experiments of the homogenization method for operators with periodic coefficients[J]. Lecture Notes in Mathematics, 1977, 707: 330-356.
[19] Chung P W, Tamma K K, Namburu R R. Asymptotic expansion homogenization for heterogeneous media: computational issues and applications[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(9): 1291-1301.
[20] Chen C M, Kikuchi N O, Rostam F A. An enhanced asymptotic homogenization method of the static and dynamics of elastic composite laminates[J]. Computers and Structures, 2002, 82(4-5): 373-382.
[21] Kalamkarov A L, Andrianov I V, Danishevs'kyy V V. Asymptotic homogenization of composite materials and structures[J]. Applied Mechanics Review, 2009, 62(3): 030802-1-20.
[22] Xing Y F, Chen L. Accuracy of multiscale asymptotic expansion method[J]. Composite Structures, 2014, 112: 38-43.
/
〈 | 〉 |