电子与控制

穿越微下冲气流的飞翼布局无人机控制方法

  • 王彦雄 ,
  • 祝小平 ,
  • 周洲 ,
  • 徐明兴 ,
  • 冯引安
展开
  • 西北工业大学 无人机特种技术重点实验室, 西安 710072
王彦雄 男, 博士研究生。主要研究方向: 飞行器飞行动力学与控制。 Tel: 029-88451030 E-mail: wangyanxiongli@163.com;祝小平 男, 博士, 教授, 博士生导师。主要研究方向: 无人机系统总体设计、控制与制导。 Tel: 029-88451030 E-mail: zhouzhou@nwpu.edu.cn;周洲 女, 博士, 教授, 博士生导师。主要研究方向: 无人机总体、气动布局设计。 Tel: 029-88451030 E-mail: zhouzhou@nwpu.edu.cn;徐明兴 男, 博士研究生。主要研究方向: 无人飞行器飞行力学、制导与控制。 Tel: 029-88451030 E-mail: xmx2241@126.com;冯引安 男, 博士研究生。主要研究方向: 飞行器控制。 Tel: 029-88451030 E-mail: 53051588@qq.com

收稿日期: 2014-05-14

  修回日期: 2014-09-11

  网络出版日期: 2015-05-15

基金资助

国防预研项目(513250201)

A control method of flying wing UAV for penetration of microburst

  • WANG Yanxiong ,
  • ZHU Xiaoping ,
  • ZHOU Zhou ,
  • XU Mingxing ,
  • FENG Yin'an
Expand
  • Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2014-05-14

  Revised date: 2014-09-11

  Online published: 2015-05-15

Supported by

National Defense Pre-research Foundation of China (513250201)

摘要

微下冲气流是最危险的低空风切变形式,为在起降阶段安全穿越该气流,飞翼布局的无人机控制律应具有快速响应能力和良好的鲁棒性。针对大展弦比飞翼布局无人机舵面附加升力大和低速状态俯仰操纵效能低的特点,提出了舵面附加升力和机体气动力相结合的复合控制方案,改进了以输出误差为参考量的非线性指令分配策略,设计了基于迎角保护的指令分配策略。将风干扰和模型的不确定性视为未知扰动,采用自抗扰控制(ADRC)理论设计飞翼布局无人机非线性控制律,使之对风干扰和模型的不确定性进行估计补偿。仿真结果表明,复合控制与ADRC相结合的方法加速了航迹倾角的单位阶跃响应速度,使上升时间缩短了64%,同时能够实现对风干扰的有效观测和补偿,使高度损失低于2 m;能够在风切变中有效保护迎角,使其维持在5.5°以内。因此,该方法能够为飞翼布局无人机安全平稳地穿越微下冲气流提供一种参考方案。

本文引用格式

王彦雄 , 祝小平 , 周洲 , 徐明兴 , 冯引安 . 穿越微下冲气流的飞翼布局无人机控制方法[J]. 航空学报, 2015 , 36(5) : 1673 -1683 . DOI: 10.7527/S1000-6893.2014.0256

Abstract

Microburst is the most dangerous low-level wind shear. The control lawof flying wing UAV requires rapid response and good robustness for penetration of microburst during taking off and landing. Based on the low pitch control effectiveness at low airspeed and the high elevator additional lift of high aspect ratio flying wing UAV, a complex control scheme which integrates elevator additional lift control with aerodynamic control is proposed. Nonlinear command distribution strategy based on output error for reference is developed, and command distribution strategy based on angle of attack protection is designed. The wind disturbance and the model uncertaintiesare taken as uncertain factors. Nonlinear control law of flying wing UAV based on active disturbance rejection control (ADRC) theory is designed for estimating and compensating the wind disturbance and the model uncertainties. The simulated results show that the control method combines complex control with ADRC, makes flight path unit step response rapidly, and shortens its rise time by 64%, estimates and compensates the wind disturbance, maintains altitude loss under 2 m, protects angle of attack and keeps it under 5.5 °. Therefore, this control method provides a reference way for and finally keeping flying wing UAV safe during penetration of microburst.

参考文献

[1] Zhang Z J, Wang L, Wang L X, et al. Three-axis stability characteristics of flying wing with high aspect ratio[J]. Systems Engineering Theory & Practice, 2012, 32(5): 1129-1135 (in Chinese). 张子军, 王磊, 王立新, 等. 大展弦比飞翼布局飞机的三轴稳定特性[J]. 系统工程理论与实践, 2012, 32(5): 1129-1135.
[2] Wang L, Wang L X, Jia Z R. Control allocation method for combat flying wing with multiple control surfaces[J]. Acta Aeronautica et Astronautica Sinca, 2011, 32(4): 571-579 (in Chinese). 王磊, 王立新, 贾重任. 多操纵面飞翼布局作战飞机的控制分配方法[J]. 航空学报, 2011, 32(4): 571-579.
[3] Gloria S, Ulf R. Yaw control of a tailless aircraft configuration[J]. Journal of Aircraft, 2010, 47(5): 1807-1810.
[4] Wang R, Zhu X P, Zhou Z, et al. Design of fixed structure H2/H∞ flight control law by genetic algorithm and LMI[J]. Acta Aeronautica et Astronautica Sinca, 2008, 29(4): 1031-1036 (in Chinese). 王睿, 祝小平, 周洲, 等. 利用遗传算法和LMI设计固定结构H2/H∞飞行控制律[J]. 航空学报, 2008, 29(4): 1031-1036.
[5] Gao J, Wang L X, Zhou K. Gust load alleviation control of aircraft with large ratio flying wing configuration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(9): 1076-1079 (in Chinese). 高洁, 王立新, 周堃. 大展弦比飞翼构型飞机阵风载荷缓解控制[J]. 北京航空航天大学学报, 2008, 34(9): 1076-1079.
[6] Zhang L G, Wang Y. Safety-concerned longitudinal control strategy for takeoff phase of UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(10): 1183-1187 (in Chinese). 张利刚, 王勇. 轮式起降无人机安全起飞纵向控制[J]. 北京航空航天大学学报, 2009, 35(10): 1183-1187.
[7] Zhou N, Liu X, Yin J H. Intelligent control of airplane under microburst windshear[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2002, 34(5): 479-483 (in Chinese). 周娜, 刘昶, 尹江辉. 飞机穿越微下冲暴流风切变的智能控制[J]. 南京航空航天大学学报, 2002, 34(5): 479-483.
[8] Sandeep S M, Robert F S. Optimal recovery from microburst wind shear[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(6): 1010-1017.
[9] Chen Y, Jin C J. Ground-speed/air-speed control of airplane during penetration of windshear[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(6): 621-624 (in Chinese). 陈勇, 金长江. 飞机穿越风切变时的地速/空速控制[J]. 北京航空航天大学学报, 2002, 28(6): 621-624.
[10] Melvin R, James E S, Kamran R. A microburst response and recovery scheme using advanced flight envelope protection, AIAA-2012-4444 [R]. Reston: AIAA, 2012.
[11] Rokhsaz K, Steck J E, Chandramohan R, et al. Response of an advanced flight control system to microburst encounters, SAE-2005-01-3420[R]. Grapevine: Aerotech Congress & Exhibition, 2005.
[12] Sadat-Hoseini H, Fazelzadeh S A, Rasti A, et al. Final approach and flare control of a flexible aircraft in crosswind landings[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(4): 946-957.
[13] Zhou Z, Zhu X P, Liu Q G. Variable structure control for aircraft in windshear field[J]. Journal of Northwestern Polytechnical University, 1997, 15(4): 558-562 (in Chinese). 周洲, 祝小平, 刘千刚. 飞机穿越微下击暴流的航迹变结构控制[J]. 西北工业大学学报, 1997, 15(4): 558-562.
[14] Shi J P, Zhang W G. A redistributed pseudoinverse algorithm based on null-space for control allocation[J]. Computer Simulation, 2009, 26(5): 88-91 (in Chinese). 史静平, 章卫国. 一种基于零空间的再分配伪逆算法[J]. 计算机仿真, 2009, 26(5): 88-91.
[15] Shi J P. Research on control allocation methods in the advanced aircraft[D]. Xi'an: Northwestern Polytechnical University, 2009 (in Chinese). 史静平. 先进飞机多操纵面控制分配方法研究[D]. 西安: 西北工业大学, 2009.
[16] Wayne C D. Constrained control allocation[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(4): 717-725.
[17] Xu S H, Sheng Z P, Gu W J. Nonlinear distribution strategy for compound control over flying saucer[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(1): 8-11 (in Chinese). 徐胜红, 盛忠培, 顾文锦. 碟形飞行器复合控制的非线性分配策略研究[J]. 弹箭与制导学报, 2006, 26(1): 8-11.
[18] Xiao Y L, Jin C J. Flight theory of atmospheric disturbance[M]. Beijing: National Defense Industry Press, 1993: 81-84 (in Chinese). 肖业伦, 金长江. 大气扰动中的飞行原理[M]. 北京: 国防工业出版社, 1993: 81-84.
[19] Du Y L. Study of nonlinear adaptive attitude and trajectory control for near space vehicles[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010 (in Chinese). 都延丽. 近空间飞行器姿态与轨迹的非线性自适应控制研究[D]. 南京: 南京航空航天大学, 2010.
[20] Huang Y, Han J Q. Analysis and design for second order nonlinear continuous extended states observer[J]. Chinese Science Bulletin, 2000, 45(13): 1373-1379 (in Chinese). 黄一, 韩京清. 非线性连续二阶扩张状态观测器的分析与设计[J]. 科学通报, 2000, 45(13): 1373-1379.
[21] Gao Z X, Gu H B. Real-time simulation of large aircraft flying through microburst wind field[J]. Chinese Journal of Aeronautics, 2009, 22(5): 459-466.
[22] Lin L L, Yan F. Nested DE based parameter estimation for multiple vortex ring microburst model[J]. Measurement, 2013, 46(3): 1231-1236.

文章导航

/