模态选取对静气动弹性分析的影响
收稿日期: 2014-07-18
修回日期: 2014-09-05
网络出版日期: 2015-04-27
基金资助
国家自然科学基金 (11172025)
Effect of modal selection on static aeroelastic analysis
Received date: 2014-07-18
Revised date: 2014-09-05
Online published: 2015-04-27
Supported by
National Natural Science Foundation of China (11172025)
杜子亮 , 万志强 , 杨超 . 模态选取对静气动弹性分析的影响[J]. 航空学报, 2015 , 36(4) : 1128 -1134 . DOI: 10.7527/S1000-6893.2014.0247
The flexibility method and modal approach are usually used in structural analysis in the static aeroelastic research. Compared to the flexibility method which is mature but brings higher computational cost for the solution,the modal approach has the advantage of significant reduction in the dimension of the problem,high efficiency and convenient for verification. However, there are no principles for the selection of modes and one must have enough engineering experience to fully utilize the modal approach in practice. To provide modal approach with its own quantitative criteria in practice, this paper first proposes the idea of modal influence coefficient to evaluate the effect of modal selection on modal approach of aeroelastic analysis. In order to validate the rationality and validity of the modal influence coefficient, the paper carrys out control efficiency and aeroelastic correction analysis for a typical aircraft. The results show that the modal influence coefficient can accurately evaluate the effect of modal selection on static aeroelastic analysis, thus providing some helpful reference in practice.
[1] Chen G B, Yang C, Zou C Q. Fundamentals of aeroelasticity[M]. 2nd ed. Beijing: Beihang University Press, 2010: 114-118 (in Chinese). 陈桂彬, 杨超, 邹丛青. 气动弹性设计基础 [M]. 2版. 北京: 北京航空航天大学出版社, 2010: 114-118.
[2] Yang C, Wu Z G, Wan Z Q, et al. Principle of aircraft aeroelasticity[M]. Beijing: Beihang University Press, 2011: 14-22(in Chinese). 杨超, 吴志刚, 万志强, 等. 飞行器气动弹性原理[M]. 北京: 北京航空航天大学出版社, 2011: 14-22.
[3] Yang Y X, Wu Z G, Yang C. An aeroelastic optimization design approach for structural configuration of flying wings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12): 2748-2756 (in Chinese). 杨佑绪, 吴志刚, 杨超. 飞翼结构构型气动弹性优化设计方法[J]. 航空学报, 2013, 34(12): 2748-2756.
[4] Chen D W, Yang G W. Static aeroelastic analysis of flying-wing using different models[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4): 469-479(in Chinese). 陈大伟, 杨国伟. 静气动弹性计算方法研究[J].力学学报, 2009, 41(4): 469-479.
[5] Su W H, Cesnik C E S. Strain-based analysis for geo metrically nonlinear beams: a modal approach[J]. Journal of Aircraft, 2014, 51(3): 890-903.
[6] Shi X M, Xu Q, Yang B Y, et al. Dynamics modeling of plane symmetrical vehicle structural based on branch mode method[J]. Aerospace Shanghai, 2011, 28(2): 27-31(in Chinese). 史晓鸣, 许泉, 杨炳渊,等. 基于分支模态法的面对称布局飞行器结构动力学建模[J].上海航天,2011,28(2): 27-31.
[7] Wan Z Q, Tang C H, Yang C. Consistence analysis and validation of three methods for static aeroelastic divergence[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(4): 342-345 (in Chinese). 万志强, 唐长红, 杨超. 三种静气动弹性发散方法的一致性分析和验证[J].航空学报, 2002, 23(4): 342-345.
[8] Yan D, Yang C, Wan Z Q. Static aeroelastic divergence analysis by introducing correction techniques of aerodynamic data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10): 1146-1149(in Chinese). 严德, 杨超, 万志强. 应用气动力修正技术的静气动弹性发散计算[J]. 北京航空航天大学学报, 2007, 33(10):1146-1149.
[9] Yang C, Zhang B C, Wan Z Q, et al. A method for static aeroelastic analysis based on the high-order panel method and modal method[J]. Science China Technological Sciences, 2011, 54: 741-748.
[10] Rodden W P, Johnson E H. MSC/Nastran aeroelastic analysis user's guide V68[M]. Los Angeles: MSC Software Corporation, 2004: 55-67.
[11] Yin H T, Jiang J H, Zhang F, et al. Finite element modeling based on experimental modal parameters and structural dynamics optimization[J]. Foreign Electronic Measurement Technology, 2012, 31(9): 18-22 (in Chinese). 殷海涛, 姜金辉, 张方, 等. 基于试验模态参数及结构动力学优化设计的有限元建模[J]. 外国电子测量技术, 2012, 31(9): 18-22.
[12] Zhang D W, Wang J M. Generalized galerkin method for modal testing of structure with pseudomaterials[J]. AIAA Journal, 2010, 48(7): 1361-1366.
[13] Jiang J H, Zhang F, Zhang M Z. Teaching demonstration system of experiment modal parameter identification based on virtual instrument technology[J]. Foreign Electronic Measurement Technology, 2012, 31(2): 94-98 (in Chinese). 姜金辉, 张方, 张茅争. 基于虚拟仪器技术的模态参数识别教学演示系统[J]. 国外电子测量技术, 2012, 31(2): 94-98.
[14] Ward H, Stephen L, Bohr S. Modal analysis theory and experiment[M]. Bai H T, Guo J Z, translated. Beijing: Beijing Institute of Technology Press, 2001: 100-110 (in Chinese). 沃德·海伦, 斯蒂芬·拉门兹, 波尔·萨斯. 模态分析理论与试验[M]. 白化同, 郭继忠, 译. 北京: 北京理工大学出版社, 2001: 100-110.
[15] Cao S Q, Zhang W D, Xiao L X. Vibrational structure modal analysis: theoretical, practice, and application[M]. Tianjin:Tianjin University Press, 2001:174-182 (in Chinese). 曹树谦, 张文德, 萧龙翔. 振动结构模态分析:理论、实践与应用[M]. 天津: 天津大学出版社, 2001: 174-182.
[16] Xia S L, Zhao L X, Tang K B, et al. The investigation and application of the technique of CFD simulation to static aeroelasticity correction[M]. Xi'an: Northwestern Polytechnic University Press, 2009: 310-315 (in Chinese). 夏生林, 赵利霞, 唐克兵, 等. CFD技术在静气动弹性修正计算中的研究与应用[M]. 西安: 西北工业大学出版社, 2009: 310-315.
/
〈 | 〉 |