高速颤振模型设计中颤振主要模态的判断
收稿日期: 2014-07-29
修回日期: 2014-09-10
网络出版日期: 2015-04-27
基金资助
国家自然科学基金 (91216202); 国防基础科研项目(B0320110011)
Judgment on main flutter mode in high-speed flutter model design
Received date: 2014-07-29
Revised date: 2014-09-10
Online published: 2015-04-27
Supported by
National Natural Science Foundation of China (91216202); National Defense Basic Research Program (B0320110011)
颤振模型设计时难以实现完全的动力学相似,需要对颤振主要模态进行合理选择。采用数值分析方法,对颤振模型设计时主要模态的选取问题进行研究。通过各阶模态振型下气动刚度系数的比较、指定运动形式下广义非定常气动力的计算和不同模态截断下颤振结果的收敛特性分析,研究了颤振分析时不同模态运动之间的相互影响,对模态运动引起的气动力和颤振特性变化进行评估。以高超翼面模型为研究对象的数值算例结果表明,几种分析方法所判断的颤振主要模态基本一致。其中基于振型的广义气动刚度系数参数,避免了非定常气动力的计算,可作为颤振模型设计或颤振分析时主要模态选取的快速判断方法。
赵玲 , 季辰 , 刘子强 . 高速颤振模型设计中颤振主要模态的判断[J]. 航空学报, 2015 , 36(4) : 1112 -1118 . DOI: 10.7527/S1000-6893.2014.0252
It is difficult to achieve completely dynamic similarity for flutter model design. Theoretical support would be necessary to define the main flutter modes to guarantee data validity of wind tunnel flutter test. The judgment of the main flutter modes in high-speed flutter model design is studied analytically in the present paper. The effects of mode motion on generalized unsteady aerodynamic force and flutter characteristic are numerically investigated by a set of parameters, including generalized aerodynamic stiffness coefficients, unsteady aerodynamic force and flutter speeds. By comparing the results of those parameters, the interplay between mode motions is revealed. Analytical results of a high-speed sweepback wing show that the main flutter modes obtained by different methods are consistent. The aerodynamic stiffness coefficient in the expression of mode shape need not pay attention to aerodynamic force and could be taken as a quick criterion for main flutter mode selection in flutter model design and analysis.
[1] Guan D. Aircraft aeroelasticity handbook [M]. Beijing: Aviation Industry Press, 1994: 215-217 (in Chinese). 管德.飞机气动弹性力学手册[M].北京: 航空工业出版社, 1994: 215-217.
[2] Ramsey J K. NASA aeroelasticity handbook, volume 2: design guides, NASA/TP-2006-212490-VOL2-PART2[R]. Cleveland: NASA Glenn Research Center, 2006.
[3] Rodden W P, Johnson E H. MSC/NASTRAN version 68 aeroelastic analysis user's guide[M]. Los Angeles, CA: MacNeal-Schwendler Corp, 1994: 69-71.
[4] van Zyl L H. Unrestrained aeroelastic divergence and the p-k flutter equation[J]. Journal of Aircraft, 2001, 38(3): 588-590.
[5] Chen P C. Damping perturbation method for flutter solution: the g-method [J].AIAA Journal, 2000, 38(9): 1519-1524.
[6] ZONA Technology Inc. ZAERO version 8.2 theoretical manual[M]. Scottsdale, A Z:ZONA Technology Inc., 2008: 7-12.
[7] Chen G B, Zou C Q, Yang C. Aeroelastic design foundation [M]. Beijing: Beihang University Press,2004:65-89 (in Chinese). 陈桂彬, 邹丛青, 杨超. 气动弹性设计基础[M]. 北京: 北京航空航天大学出版社, 2004: 65-89.
[8] Head A L. Flutter design principle[J]. International Aviation, 1960, 10: 69-77 (in Chinese). Head A L. 颤振设计原理[J]. 国际航空, 1960, 10: 69-77.
[9] Baker M, Lenkey P. Parametric flutter analysis of the TCA configuration and recommendation for FFM design and scaling, CRAD-9408-TR-3342[R]. Seattle, W A: The Boeing Company, 1997.
[10] Edwards J W, Schuster D M, Spain C V, et al. MAVRIC flutter model transonic limit cycle oscillation test, AIAA-2001-1291[R]. Reston: AIAA, 2001.
[11] Huang R, Qian W M, Zhao Y H. Flutter analysis: using piecewise quadratic interpolation with mode tracking and wind-tunnel test[J]. Journal of Aircraft, 2010, 47(4):1447-1451.
[12] Hanson P W. Aerodynamic effects of some configuration variables o at mach numbers from 0.7 to 6.86, NASA TN D-984[R]. Washington, D. C.: National Aeronautics and Space Administration, 1961.
[13] Giesing J P, Kalman T P, Rodden W P. Subsonic unsteady aerodynamics for general configurations, AIAA-1972-0026[R]. Reston: AIAA, 1972.
[14] Kier T M. Comparison of unsteady aerodynamic modeling methodologies with respect to flight loads analysis[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. San Francisco, California: American Institute of Aeronautics and Astronautics, 2005: 1-37.
[15] van Dyke M D. A study of second-order supersonic-flow theory, NACA TN 2200[R]. Washington, D. C.: California Institute of Technology, 1951.
[16] McNamara J J, Crowell A R. Approximate modeling of unsteady aerodynamics for hypersonic aeroelasticity[J]. Journal of Aircraft, 2010, 47(6): 1932-1945.
[17] Shi X M, Yang B Y, Li H D, et al, Flutter analysis of wing-fuselage complete vehicle [J]. China Journal of Applied Mechanics, 2011, 28(6): 613-617 (in Chinese). 史晓鸣, 杨炳渊, 李海东, 等. 结合CFD和当地流活塞理论的全机组合体超声速颤振分析[J].应用力学学报, 2011, 28(6): 613-617.
[18] Dowell E H. Aeroelasticity modern tutorial[M]. Chen W J, Yin C J, translated. Beijing: Astronautic Publishing House, 1991: 67-69 (in Chinese). 道尔E H.气动弹性力学现代教程[M]. 陈文俊,尹传家,译.北京: 宇航出版社, 1991: 67-69.
/
〈 | 〉 |