流体力学与飞行力学

轴流风扇宽频噪声声功率实验研究

  • 许坤波 ,
  • 乔渭阳 ,
  • 王良峰 ,
  • 仝帆
展开
  • 西北工业大学 动力与能源学院, 西安 710129
许坤波 男, 博士研究生。主要研究方向: 叶轮机管道内宽频噪声。 Tel: 029-88482195 E-mail: spiritkb@mail.nwpu.edu.cn

收稿日期: 2014-09-18

  修回日期: 2015-03-24

  网络出版日期: 2015-04-21

基金资助

国家自然科学基金 (51476134); 空气动力学国家重点实验室研究基金(SKLA20140201)

Experimental research of broadband sound power determination in axial fan

  • XU Kunbo ,
  • QIAO Weiyang ,
  • WANG Liangfeng ,
  • TONG Fan
Expand
  • School of Power and Energy, Northwestern Polytechnical University, Xi'an 710129, China

Received date: 2014-09-18

  Revised date: 2015-03-24

  Online published: 2015-04-21

Supported by

National Natural Science Foundation of China (51476134); State Key Laboratory of Aerodynamics Research Fund (SKLA20140201)

摘要

航空发动机降噪研究迫切需要一种叶轮机械管道内宽频噪声测量方法来指导降噪设计。为了研究管道内宽频噪声,利用沿管道内壁面布置的环形麦克风阵列对单级轴流风扇进行了噪声测量,通过测量信号与参考信号互相关以及奇异值分解(SVD)方法成功地得到管道内宽频噪声结果。结果表明:该方法不仅可以计算出管道内主要单音,而且可以计算宽广频率范围内的宽频噪声;并能有效分辨出管道内向前和向后传播的声功率。宽频噪声结果证实该方法可以应用到高背景噪声和硬壁反射下的管道内声场研究。

本文引用格式

许坤波 , 乔渭阳 , 王良峰 , 仝帆 . 轴流风扇宽频噪声声功率实验研究[J]. 航空学报, 2015 , 36(9) : 2939 -2946 . DOI: 10.7527/S1000-6893.2015.0080

Abstract

It is in urgent need for aircraft engine noise reduction research to find a kind of measurement technique for broadband noise determination in turbomachinery duct to guide the noise reduction design. In this paper, we use wall-flush annularly installed microphone array to measure the noise of axial fan and finally obtain the broadband sound power in duct by means of cross-spectra between measurement signals and reference signal and the application of singular value decomposition (SVD) method. The results show that this experimental technique enables the calculation of not only in-duct transmitted sound power for dominant tones, but also broadband noise over a wide frequency range; this method also helps to distinguishe between sound power transmitted in and against the direction of flow. Broadband noise results confirm that this method behaves fairly robust in loud background noise and hard wall reflection condition.

参考文献

[1] Qiao W Y. Aero-engine aeroacoustics[M]. Beijing: Bei-hang University Press, 2010: 1-8 (in Chinese). 乔渭阳. 航空发动机气动声学[M]. 北京: 北京航空航天大学出版社, 2010: 1-8.
[2] Enghardt L, Holewa A, Tapken U. Comparison of different analysis techniques to decompose a broad-band ducted sound field in its mode constituents[C]//Proceedings of the 13th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2007.
[3] Tyler J M, Sofrin T G. Axial flow compressor noise studies[J]. Transactions of the Society of Automotive Engineers, 1962, 70: 309-332.
[4] Enghardt L, Lowis C. Broadband sound power determination in flow ducts[C]//Proceedings of the 10th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2004.
[5] Lowis C R, Joseph P. A focused beamformer technique for separating rotor and stator-based broadband sources[C]//Proceedings of the 12th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2006.
[6] Sijtsma P. Using phased array beamforming to locate broadband noise sources inside a turbofan engine, NLR-TP-2006-320[R]. Cambridge, MA: AARC Engine Noise Phased Array Workshop, 2006.
[7] Sijtsma P. Feasibility of in-duct beamforming[C]//Proceedings of the 13th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2007.
[8] Dougherty R P, Walker B E, Sutliff D L. Locating and quantifying broadband fan sources using in-duct microphones[C]//Proceedings of the 16th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2010.
[9] Finez A, Leneveu R, Picard C, et al. In-duct acoustic source detection using acoustic imaging techniques[C]//Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2013.
[10] Ian D, Bennett G J. Experimental investigations of coherence based noise source identification technique for turbomachinery applications-classic and novel techniques[C]//Proceedings of the 17th AIAA/CEAS Aeroacoustic Conference. Reston: AIAA, 2011.
[11] Pardowitz B, Tapken U, Knobloch K, et al. Core noise-identification of broadband noise source of a turbo-shaft engine[C]//Proceedings of the 20th AIAA/CEAS Aeroacoustic Conference. Reston: AIAA, 2014.
[12] Michalke A, Arnold F, Holste F. On the coherence of the sound field in a circular duct with uniform mean flow[J]. Journal of Sound and Vibration, 1996, 190(2): 261-271.
[13] Chung J Y. Rejection of flow noise using a coherence function method[J]. Journal of the Acoustical Society of America, 1977, 62(2): 338-395.
[14] Enghardt L, Moreau A, Tapken U, et al. Radial mode decomposition in the outlet of a LP turbine-estimation of the relative importance of broadband noise[C]//Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2009.
[15] Moreau A, Enghardt L. Ranking of fan broadband noise sources based on an experimental parametric study[C]//Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2009.
[16] Tapken U, Enghardt L. Optimization of sensor arrays for radial mode analysis in flow ducts[C]//Proceedings of the 12th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2006.
[17] Jürgens W, Tapken U, Pardowitz B, et al. Technique to analyze characteristics of turbomachinery broadband noise sources[C]//Proceedings of the 16th AIAA/CEAS Aeroacoustic Conference. Reston: AIAA, 2010.
[18] Jürgens W, Pardowitz B, Tapken U, et al. Separation of broadband noise sources in aeroengine ducts with respect to modal decomposition[C]//Proceedings of the 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference), 2011.
[19] Arnold F. Experimental and numerical investigation on the performance and determination in flow canals[D]. Berlin: Fortschrift Berichte, 1999.
[20] Nelson P A, Yoon S H. Estimation of acoustic source strength by inverse methods: Part I, conditioning of the inverse problem[J]. Journal of Sound and Vibration, 2000, 233(4): 639-664.
[21] Kim Y, Nelson P A. Estimation of acoustic source strength within a cylindrical duct by inverse methods[J]. Journal of Sound and Vibration, 2004, 275(1): 391-413.

文章导航

/