固体力学与飞行器总体设计

薄壁管壳高速正撞击穿孔特性的数值研究

  • 王猛 ,
  • 张立佼 ,
  • 唐恩凌
展开
  • 沈阳理工大学装备工程学院, 沈阳 110159
王猛,男,博士,副教授。主要研究方向:材料冲击动力学行为。Tel:024-24681246,E-mail:wangm2050@163.com;张立佼,男,硕士研究生。主要研究方向:超高速撞击物理机制。Tel:024-24681250,E-mail:ligongzhanglijiao@163.com;唐恩凌,男,博士,教授。主要研究方向:强动载下材料的力学响应。Tel:024-24681250,E-mail:tangenling@126.com

收稿日期: 2015-01-14

  修回日期: 2015-03-24

  网络出版日期: 2015-04-02

基金资助

国家自然科学基金(11272218);辽宁省教育厅科技研究项目(L2015466)

Numerical investigation on characteristics of perforation for thin cylinder pipes by normal impact at high velocity

  • WANG Meng ,
  • ZHANG Lijiao ,
  • TANG Enling
Expand
  • College of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, China

Received date: 2015-01-14

  Revised date: 2015-03-24

  Online published: 2015-04-02

Supported by

National Natural Science Foundation of China (11272218); Science and Technology Research Projects of Education Department of Liaoning Province (L2015466)

摘要

受径向曲率的影响,薄壁管壳遭受高速弹丸撞击产生的局部穿孔毁伤与薄板结构并不相同。本文利用LS-DYNA3D动力学程序,采用光滑粒子流体动力学和有限元法相耦合的方法(SPH-FEM),对球形弹丸高速正撞击不同直径薄壁钢管的穿孔毁伤特性进行数值研究。根据小弹丸高速撞击薄板的物理力学性质,可把穿孔过程简化为初始流动扩孔和随后的惯性扩孔两个阶段,提出一种圆柱管壳高速正撞击穿孔的简化物理模型,并分析圆管直径对轴向孔径和径向孔径尺寸差值比的影响。数值模拟结果表明,撞击速度为2~3 km/s时,薄壁钢管的正撞击穿孔略呈椭圆状,其轴向孔径尺寸稍大于径向孔径尺寸;随着薄壁钢管直径的增加,两个方向的孔径尺寸差值比减小。另外,薄壁钢管遭受小弹丸撞击穿孔后产生碎片云的分布形态受径向直径影响明显,相同撞击条件时,钢管直径越大,则产生碎片云的膨胀角和残余速度也较大。

本文引用格式

王猛 , 张立佼 , 唐恩凌 . 薄壁管壳高速正撞击穿孔特性的数值研究[J]. 航空学报, 2015 , 36(12) : 3876 -3884 . DOI: 10.7527/S1000-6893.2015.0082

Abstract

The characteristics of perforation damage for thin cylinders suffered by high velocity impact is different from that of thin plates because of the curvature. In this paper, numerical investigation on the perforation damage behavior for thin steel cylinder pipes with different radial diameters is performed with the use of LS-DYNA3D program and smoothed partide hydrodynamics finite element method (SPH-FEM) algorithm. Based on the physics mechanics characteristics of thin plate impacted by fragment projectile at high velocity, perforation can be simplified as two stages, initial fluid dynamical piercing and the following inertia piercing, and a new simplified physics model has been proposed to illustrate the perforation process. The effect of the diameter of the pipes has been discussed on the difference ratio between axial diameter size and the radial size of the perforation hole. The result shows that the perforation displays oval in shape and the axial size of the hole is a little longer than the radial size. For the range of 2-3 km/s, the difference ratio decreases with the diameter of the thin cylinder pipe increasing. What's more, the distribution of debris cloud after perforation shows sensitive to the diameter of cylinder pipes. Under the similar impact condition, it reveals that cylinder pipes with larger diameter tend to produce relatively larger expansion angle and larger residual velocity of the debris.

参考文献

[1] Nishida M, Tanaka K. Experimental study of perforation and cracking of water-filled aluminum tubes impacted by steel spheres[J]. International Journal of Impact Engineering, 2006, 32(12):2000-2016.
[2] Lee M. Analysis of high-explosive fragmenting shell impact into spaced plates[J]. International Journal of Impact Engineering, 2006, 33(1-12):364-370.
[3] Jones N, Birch R S. Low-velocity impact of pressurized pipelines[J]. International Journal of Impact Engineering, 2010, 37(2):207-219.
[4] Abedrabbo N, Mayer R, Thompson A, et al. Crash response of advance high-strength steel tubes:Experiment and model[J]. International Journal of Impact Engineering, 2009, 36(8):1044-1057.
[5] Kristofferson M, Borvik T, Westermann I, et al. Impact against X65 steel pipes:An experimental investigation[J]. International Journal of Solids and Structures, 2013, 50(20-21):3430-3445.
[6] Yuan J H, Zhu X, Zhang Z H. Elastic plastic dynamic response of a stiffened cylindrical shell subjected to underwater explosive loading[J]. Journal of Vibration and Shock, 2012, 31(24):131-136(in Chinese).袁建红,朱锡,张振华.水下爆炸载荷作用下加筋圆柱壳结构弹塑性动力响应研究[J].振动与冲击, 2012, 31(24):131-136.
[7] Xia M, Huang Z X, Gu X H, et al. Experimental research on shock-produced deformation of thin-walled metal tubes subjected to the magnetic dynamic load and electrical explosion[J]. Acta Armamentarii, 2013, 34(3):257-262(in Chinese).夏明,黄正祥,顾晓辉,等.磁爆加载薄壁金属管的冲击变形实验研究[J].兵工学报, 2013, 34(3):257-262.
[8] Dai X S, Ma J M. Energy absorbed by a metal tube under axial crush load[J]. Journal of Vibration and Shock, 2012, 31(6):100-103(in Chinese).戴向胜,马建敏.冲击载荷作用下金属圆柱壳能量吸收研究[J].振动与冲击, 2012, 31(6):100-103.
[9] Corbett G G, Reid S R, Johnson W. Impact loading of plates and shells by free-flying projectiles:A review[J]. International Journal of Impact Engineering, 1996, 18(2):141-230.
[10] Palmer A, Neilson A, Sivadasan S. Pipe perforation by medium-velocity impact[J]. International Journal of Impact Engineering, 2006, 32(7):1145-1157.
[11] Lu G Y, Lei J P, Han Z J, et al. Denting and failure of liquid-filled tubes under lateral impact[J]. Acta Mechanica Solida Sinica, 2012, 25(6):609-615.
[12] Lu G Y, Zhang S Y, Lei J P, et al. Dynamic responses and damages of water-filled pressurized metal tube impacted by mass[J]. International Journal of Impact Engineering, 2007, 34(10):1594-1601.
[13] Guan G S, Pang B J, Cui N G, et al. Size investigation of hole due to hypervelocity impact aluminum spheres on thin aluminum sheet[J]. Engineering Mechanics, 2007, 24(12):181-185(in Chinese).管公顺,庞宝君,崔乃刚,等.铝球弹丸超高速正撞击薄铝板穿孔尺寸研究[J].工程力学, 2007, 24(12):181-185.
[14] Rusinek A, Zaera R, Klepazko J R, et al. Experimental and numerical study on the perforation process of mild steel sheets subjected to perpendicular impact by hemispherical projectiles[J]. International Journal of Impact Engineering, 2009, 36(4):565-587.
[15] Lawrence J D C. An explanation for the minimal effect of body curvature on hypervelocity penetration hole formation[J]. International Journal of Solids and Structure, 2004, 41(15):4163-4177.
[16] Liu M B, Liu G R. Smoothed particle hydrodynamic (SPH):An overview and recent developments[J]. Archives of Computational Methods in Engineering, 2010, 17(1):25-76.
[17] Xiao Y H, Hu D A, Han X. A coupling algorithm of finite element and smoothed particle hydrodynamics[J]. Chinese Journal of Computational Physics, 2011, 28(2):219-224(in Chinese).肖毅华,胡德安,韩旭.一种有限元-光滑粒子流体动力学耦合算法[J].计算物理, 2011, 28(2):219-224.
[18] Zhang Z C, Qiang H F, Gao W R. Application of SPH-FEM contact algorithm in impact dynamics simulation[J]. Chinese Journal of Solid Mechnics, 2011, 32(2):319-324(in Chinese).张志春,强洪夫,高巍然. SPH-FEM接触算法在冲击动力学数值计算中的应用[J].固体力学学报, 2011, 32(3):319-324.
[19] Johnson G R. Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations[J]. Nuclear Engineering and Design, 1994, 150(2-3):265-274.
[20] Rodriguez-Martinez J A, Rusinek A, Pesci R, et al. Experimental and numerical analysis of the martensitic transformation in AISI 304 steel sheets subjected to perforation by conical and hemispherical peojectiles[J]. International Journal of Solids and Structures, 2013, 50(2):339-351.

文章导航

/