基于最大似然估计的TDOA/FDOA无源定位偏差补偿算法
收稿日期: 2014-09-09
修回日期: 2014-11-19
网络出版日期: 2015-03-31
基金资助
国家自然科学基金(60901069); 国家"863"计划(2013AAXXXX061)
Bias compensation algorithm based on maximum likelihood estimation for passive localization using TDOA and FDOA measurements
Received date: 2014-09-09
Revised date: 2014-11-19
Online published: 2015-03-31
Supported by
National Natural Science Foundation of China(60901069), National High-tech Research and Development Program of China (2013AAXXXX061)
在到达时差/到达频差(TDOA/FDOA)无源定位系统中,定位问题的非线性使得定位的结果存在偏差,特别是在噪声较大或者接收站布站不合理的情况下,定位的偏差尤其显著。针对这一问题,提出了一种基于最大似然估计的偏差补偿算法。该方法分为3步:首先,利用最大似然估计器对目标的位置和速度进行求解;其次,通过利用目标定位的估计值和含噪的测量值,对目标的位置和速度偏差值进行理论分析和推导;最后,将最大似然估计解减去理论偏差值,得到经过偏差补偿的新的目标定位解。理论分析和实验仿真证明,在一定噪声的情况下,所推导的目标位置和速度的理论偏差值与实际偏差值相符,并且经过偏差补偿后的定位算法,在保持目标定位的均方根误差(RMSE)与原最大似然算法一致的情况下,目标的位置和速度偏差值远远小于原最大似然算法的偏差值,目标定位精度得到了有效的提高。
周成 , 黄高明 , 单鸿昌 , 高俊 . 基于最大似然估计的TDOA/FDOA无源定位偏差补偿算法[J]. 航空学报, 2015 , 36(3) : 979 -986 . DOI: 10.7527/S1000-6893.2014.0317
In the time differences/frequency differences of arrival (TDOA/FDOA) passive localization system, the nonlinear nature of the localization problem creates bias to a location estimate. When the measurement noise is large and the geolocation geometry is poor, the bias of localization is significant. In order to solve the problem, a novel bias compensation localization algorithm based on maximum likelihood estimation is proposed. The algorithm locates the target in three steps. Firstly, it starts by solving the target location using the maximum likelihood estimator. Secondly, using the estimated location and noisy data measurements, the theoretical bias of the target location estimate is derived in the second step. Finally, the bias compensated result is derived by subtracting theoretical bias from the maximum likelihood solution. Theoretical analysis and actual results verify that the theoretical bias of target position and velocity matches very well with simulation when the noise is small, and the bias compensation algorithm can reduce the bias effectively while keeping the same root mean square error (RMSE) with the original maximum likelihood algorithm, meanwhile the target localization performance is improved effectively.
[1] Xu Z, Qu C W, Wang C H. Performance analysis for multiple moving observers passive localization in the presence of systematic errors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 629-635 (in Chinese). 徐征, 曲长文, 王昌海. 系统误差条件下的多运动站无源定位性能分析[J]. 航空学报, 2013, 34(3): 629-635.
[2] Ozgur B, Kenneth K D. Localization of more sources than sensors via joint-sparse beyasian learning[J]. IEEE Signal Processing Letters, 2014, 21(2): 131-134.
[3] Wang Z H, Seyed A, Reza Z. Omnidirectional mobile NLOS identification and localization via multiple cooperative nodes[J]. IEEE Transactions on Mobile Computing, 2012, 11(12): 2047-2059.
[4] Chen W, Li X. Sensor localization in concave environments[J]. ACM Transactions on Sensor Networks, 2008, 4(1): 1-31.
[5] Canclini A, Antonacci F, Sarti A, et al. Acoustic source localization with distributed asynchronous microphone networks[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(2): 439-443.
[6] Satoshi K, Hiroshi M, Yuuki T, et al. Microphone array for 2D sound localization and capture[J]. Springer Tracts in Advanced Robotics, 2006, 21(1): 45-54.
[7] Chen T Y, Liu C S, Zakharov V. Source localization using matched-phase matched-field processing with phase descent search[J]. IEEE Journal of Oceanic Engineering, 2012, 37(2): 261-269.
[8] Natanael N M, Eduardo F S F, Jose M S. Narrow-band short-time frequency-domain blind signal separation of passive sonar signals[J]. Lecture Notes in Computer Science, 2009, 5441(1): 686-693.
[9] Li J D, Sun X Y, Huang P Y, et al. Performance analysis of active target localization using TDOA and FDOA measurements in WSN[C]//IEEE 22nd International Conference on Advanced Information Networking and Applications Workshops. Piscataway, NJ: IEEE, 2008: 585-589.
[10] Liu X G. Analysis on the error of single/multiple airborne observer(s) passive localization[D]. Changsha: National University of Defense Technology, 2010 (in Chinese). 刘晓光. 单/多机空空无源定位误差分析[D]. 长沙: 国防科学技术大学, 2010.
[11] Rui L Y, Ho K C. Bias analysis of source localization using the maximum likelihood estimator[C]//2012 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ: IEEE, 2012: 2605-2608.
[12] Ho K C. Bias reduction for an explicit solution of source localization using TDOA[J]. IEEE Transactions on Signal Processing, 2012, 60(5): 2101-2113.
[13] Barton R J, Rao D. Performance capabilities of long-range UWB-IR TDOA localization systems[J]. EURASIP Journal on Advances in Signal Processing, 2008, 2008(81): 1-17.
[14] Dogancay K. Bias compensation for the bearings-only pseudolinear target track estimator[J]. IEEE Transactions on Signal Processing, 2006, 54(1): 59-68.
[15] Rui L Y, Ho K C. Bias compensation for target tracking from range based maximum likelihood position estimates[C]//2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop. Piscataway, NJ: IEEE, 2012: 193-196.
[16] Hao B J, Li Z, Qi P H, et al. Effective bias reduction methods for passive source localization using TDOA and GROA[J]. Science China Information Sciences, 2013, 56(7): 1-12.
[17] Sun M, Ho K C. An asymptotically efficient estimator for TDOA and FDOA positioning of multiple disjoint sources in the presence of sensor location uncertainties[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3434-3440.
[18] Foy W H. Position-location solutions by Taylor series estimation[J]. IEEE Transactions on Aerospace Electronic System, 1976, 12(3): 187-194.
[19] Zhang X D. Matrix analysis and applications[M]. Beijing: Tsinghua University Press, 2004: 64-70 (in Chinese). 张贤达. 矩阵分析与应用[M]. 北京: 清华大学出版社, 2004: 64-70.
[20] Kay S M. Fundamentals of statistical signal processing, estimation theory[M]. New York: Prentice-Hall, 1993: 20-30.
[21] Wang G , Li Y M, Nirwan A. A semi-definite relaxation method for source localization using TDOA and FDOA measurements[J]. IEEE Transactions on Vehicular Technology, 2013, 62(2): 853-862.
/
〈 |
|
〉 |