电子与控制

高超声速飞行器自适应反步控制器设计

  • 路遥 ,
  • 董朝阳 ,
  • 王青
展开
  • 1. 北京航空航天大学 航空科学与工程学院, 北京 100191;
    2. 北京航空航天大学 自动化科学与电气工程学院, 北京 100191
路遥 男, 博士研究生。主要研究方向: 非线性控制理论及应用, 飞行器控制。Tel: 010-82338161 E-mail: luyaosacred@126.com;王青 女, 博士, 教授, 博士生导师。主要研究方向: 航天器控制与制导,故障检测。Tel: 010-82317337 E-mail: wangqing@buaa.edu.cn

收稿日期: 2014-03-25

  修回日期: 2014-09-15

  网络出版日期: 2015-03-31

基金资助

国家自然科学基金 (61374012, 61273083)

Adaptive backstepping controller design for hypersonic vehicle

  • LU Yao ,
  • DONG Chaoyang ,
  • WANG Qing
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;
    2. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China

Received date: 2014-03-25

  Revised date: 2014-09-15

  Online published: 2015-03-31

Supported by

National Natural Science Foundation of China (61374012, 61273083)

摘要

针对含有不确定干扰项的吸气式高超声速飞行器模型,分别设计了基于反馈线性化的速度控制器和基于反步法的航迹控制器,以实现对速度和航迹角参考信号的稳定跟踪。通过指令滤波器得到俯仰角的实际跟踪指令及其一阶、二阶微分信号,可直接设计升降舵控制指令,在解决了虚拟控制量求导"复杂性爆炸"问题的同时,减少了反推计算步数,从而达到提高系统动态性能和优化控制器结构的目的。基于LaSalle不变集原理和Lyapunov理论设计的自适应更新律保证了系统的稳定性。仿真结果表明,所设计的控制器在飞行器存在不确定干扰的情况下仍能满足对参考信号跟踪性能的要求。

本文引用格式

路遥 , 董朝阳 , 王青 . 高超声速飞行器自适应反步控制器设计[J]. 航空学报, 2015 , 36(3) : 970 -978 . DOI: 10.7527/S1000-6893.2014.0255

Abstract

Considering an air-breathing hypersonic vehicle model including uncertain interferences, a feedback linearization velocity controller and an adaptive backstepping flight path controller are proposed respectively to achieve the stable tracking of velocity and flight path angle reference signals. A command filter is employed to obtain the actual tracking commands of pitch angle and their first and second derivative signals, then the control law of elevator can be designed directly, which avoids the "explosion of complexity" of virtual control command derivatives and reduces the steps of inference calculation simultaneously. This method improves the dynamic performance of the control system and optimizes the structure of the controller. The system stability is guaranteed by the adaptive control laws designed using LaSalle's invariant principle as well as Lyapunov theory. Simulation results show that the reference signals' tracking performance can be achieved in the presence of uncertain interferences.

参考文献

[1] Sun C Y, Mu C X, Yu Y. Some control problems for near space hypersonic vehicles[J]. Acta Automatica Sinica, 2013, 39(11): 1901-1913 (in Chinese). 孙长银, 穆朝絮, 余瑶. 近空间高超声速飞行器控制的几个科学问题研究[J]. 自动化学报, 2013, 39(11): 1901-1913.







[2] Zeng K C, Xiang J W. Uncertainty analysis of flight dynamic characteristics for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 798-808 (in Chinese). 曾开春, 向锦武. 高超声速飞行器飞行动力学特性不确定分析[J]. 航空学报, 2013, 34(4): 798-808.







[3] Tian X K, Tang S, Zhu Q J. Flight dynamics modeling and analysis of flexible hypersonic flight vehicles[J]. Applied Mechanics and Materials, 2013, 275: 513-517.







[4] Qi R, Huang Y, Jiang B, et al. Adaptive backstepping control for a hypersonic vehicle with uncertain parameters and actuator faults[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2013, 227(1): 51-61.







[5] Xu B, Wang S, Gao D, et al. Command filter based robust nonlinear control of hypersonic aircraft with magnitude constraints on states and actuators[J]. Journal of Intelligent & Robotic Systems, 2014, 73(1-4): 233-247.







[6] Gao D, Wang S, Zhang H. A singularly perturbed system approach to adaptive neural back-stepping control design of hypersonic vehicles[J]. Journal of Intelligent & Robotic Systems, 2014, 73(1-4): 249-259.







[7] Xu B, Wang D, Wang H, et al. Adaptive neural control of a hypersonic vehicle in discrete time[J]. Journal of Intelligent & Robotic Systems, 2014, 73(1-4): 219-231.







[8] Swaroop D, Hedrick J K, Yip P P, et al. Dynamics surface control for a class of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2000, 45(10): 1893-1899.







[9] Yao C, Wang X. Adaptive backstepping sliding model control of hypersonic vehicle based on CMAC and dynamic surface[J]. International Journal of Computer Applications in Technology, 2013, 46(3): 203-209.







[10] Xu B, Huang X, Wang D, et al. Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation[J]. Asian Journal of Control, 2014, 16(1): 162-174.







[11] Huang X Y, Wang Q, Dong C Y. Robust adaptive control of hypersonic vehicles via Backstepping method[J]. Systems Engineering and Electronics, 2011, 33(6): 1321-1326 (in Chinese). 黄喜元, 王青, 董朝阳. 基于Backstepping的高超声速飞行器鲁棒自适应控制[J]. 系统工程与电子技术, 2011, 33(6): 1321-1326.







[12] Fang Y M, Shi S L, Li J X, et al. Adaptive backstepping control for electro-hydraulic servo system with input saturation based on command filter[J]. Electric Machines and Control, 2013, 17(9): 105-110 (in Chinese). 方一鸣, 石胜利, 李建雄, 等. 基于指令滤波的电液伺服系统自适应反步控制[J]. 电机与控制学报, 2013, 17(9): 105-110.







[13] Parker J T, Serrani A, Yurkovich S, et al. Control-oriented modeling of an air-breathing hypersonic vehicle[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 856-868.







[14] Huang X Y. Robust adaptive control for hypersonic vehicles[D]. Beijing: Beihang University, 2011 (in Chinese). 黄喜元. 高超声速飞行器鲁棒自适应控制方法研究[D]. 北京: 北京航空航天大学, 2011.







[15] Khalil H K. Nonlinear systems[M]. 3rd ed. Zhu Y S, Dong H, Li Z Z, et al. translated. Beijing: Publishing House of Electronics Industry, 2005: 89-94 (in Chinese). Khalil H K. 非线性系统 [M]. 3版. 朱义胜, 董辉, 李作洲,等译. 北京: 电子工业出版社, 2005: 89-94.







[16] Gao D X, Sun Z Q, Luo X, et al. Fuzzy adaptive control for hypersonic vehicle via Backstepping method[J]. Control Theory and Applications, 2008, 25(5): 805-810 (in Chinese). 高道祥, 孙增圻, 罗熊, 等. 基于Backstepping的高超声速飞行器模糊自适应控制[J]. 控制理论与应用, 2008, 25(5): 805-810.

文章导航

/