电子与控制

终端区进场交通流广义跟驰行为与复杂相变分析

  • 张洪海 ,
  • 杨磊 ,
  • 别翌荟 ,
  • 尹苏皖
展开
  • 南京航空航天大学 民航学院, 南京 211106
张洪海 男, 博士, 副教授, 硕士生导师。主要研究方向: 飞行流理论与调控技术、 空管协同化与智能化和复杂空中交通系统。Tel: 025-52112669 E-mail: zhh0913@163.com;别翌荟 男, 硕士研究生。主要研究方向: 空中交通流优化控制, 空域容量评估。Tel: 025-52112669 E-mail: 250060638@qq.com;尹苏皖 女, 硕士研究生。主要研究方向: 机场终端区容量评估。Tel: 025-52112669 E-mail: 739688191@qq.com

收稿日期: 2014-04-02

  修回日期: 2014-07-09

  网络出版日期: 2015-03-31

基金资助

国家自然科学基金(61104159);中央高校基本科研业务费专项资金(NJ20130019)

Analysis on generalized following behavior and complex phase- transition law of approaching traffic flow in terminal airspace

  • ZHANG Honghai ,
  • YANG Lei ,
  • BIE Yihui ,
  • YIN Suwan
Expand
  • College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Received date: 2014-04-02

  Revised date: 2014-07-09

  Online published: 2015-03-31

Supported by

National Natural Science Foundation of China (6110459); Fundamental Research Funds for the Central Universities (NJ20130019)

摘要

空中交通流特性分析是空中交通流理论研究的重要内容,是空中交通管理的重要依据。基于终端区交通流混杂动力特征,采用模糊逻辑方法提出了航空器动态期望间隔控制策略,运用"刺激-反射"跟驰理论和局域先到先服务(FCFS)的原则建立了终端区交通流广义跟驰模型,并基于NetLogo构建了终端区交通流多智能体仿真平台,结合广州白云机场(ZGGG)02R跑道进场实例,演析了终端区进场交通系统涌现行为,揭示了交通流的速度、密度和流量3个基本参数之间的相互关系,发掘了空中交通蕴含的自由态、畅行态、亚稳态、伪拥塞态和同步态等5个演变相态,剖析了不同交通组织、间隔标准和流控策略下交通流的相变规律。研究成果可为丰富完善空中交通流理论奠定部分基础,为科学管控空中交通提供重要基础支撑。

本文引用格式

张洪海 , 杨磊 , 别翌荟 , 尹苏皖 . 终端区进场交通流广义跟驰行为与复杂相变分析[J]. 航空学报, 2015 , 36(3) : 949 -961 . DOI: 10.7527/S1000-6893.2014.0157

Abstract

Air traffic flow's characteristics analysis is an essential part of air traffic flow theory research and also an important basis of air traffic management. Based on hybrid dynamic characteristics of traffic flow, fuzzy logic method is adopted to present dynamic separation control strategy to reflect controller's decision behavior; "stimulation-reflection" following theory and local first come first serve (FCFS) rules are used to establish generalized following model of arriving flow in terminal airspace. To deduce and analyze emergence behavior of air traffic system, multi-agent simulation platform is setup using Net Logo tool to simulate the arriving flow of ZGGG 02R. The research reveals the inter-relationship between traffic flow parameters of velocity, density and flow rate, and discovers five phases in arriving air traffic flow evolvement, i.e., free, unconstrained, semi-stable, Pseudo congestion and synchronization, dissects phase transformation under different traffic organizations, separation standards and Miles-in-trail strategies. The outcome of this paper could lay a foundation for air traffic flow theory, which is helpful for the effective control of air traffic.

参考文献

[1] Lordan O, Sallan J M, Simo P, et al. Robustness of the air tranport network[J]. Transportation Research: Part E, 2014, 68: 155-163.



[2] Tang J J, Alam S, Lokan C, et al. A multi-objective approach for dynamic airspace sectorization using agent based and geometric models [J]. Transportation Research: Part C, 2012, 21(1): 89-121.



[3] Tandale M D, Sengupta P, Menon P K, et al. Queuing network models of the national airspace system[C]//The 26th Congress of International Council of the Aeronautical Sciences. Reston: AIAA, 2008: 1-14.



[4] Hansen M. Micro-level analysis of airport delay externalities using deterministic queuing models: a case study[J]. Journal of Air Transport Management, 2002, 8(2): 73-87.



[5] Hansen M, Odoni A, Lovell D, et al. Advanced stochastic network queuing models of the impact of 4D trajectory precision[C]//NEXTOR Research Symposium. Washington, D.C.: FAA Headquaters, 2008: 1-25.



[6] Menon P K, Tandale M D, Kim J, et al. A framework for stochastic air traffic flow modeling and analysis[C]//AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2010: 1-28.



[7] Bayen A M, Raffard R L, Tomlin C J. Adjoint-based control of a new eulerian network model of air traffic flow [J]. IEEE Transactions on Control Systems Technology, 2006, 14(5) : 804-818.



[8] Robelin C A, Sun D, Wu D, et al. MILP control of aggregate eulerian network airspace models[C]//Proceedings of the 2006 American Control Conference. Piscataway, NJ: IEEE, 2006: 5257-5262.



[9] Lighthill M J, Whitham G B. On kinematic waves. II. A theory of traffic flow on long crowded roads[J]. Proceedings of the Royal Society of London. Mathematical and Physical Sciences Series A, 1955, 229( 1178): 317-345.



[10] Daganzo C F. The cell transmission model, Part II: network traffic [J]. Transportation Research: Part B, 1995, 29(2): 79-93.



[11] Amor S B, Tran Dac H, Bui M, et al. Simulating dynamic ATM network effects using cellular automata[C]//Proceedings of European Conference on Complex Systems. Dresen, Germany: ECCS, 2007.



[12] Zhang Z N, Cai M, Wang L L, et al. Research of longitudinal safety separation based on nagel-schreckenberg traffic flow model [J]. Physics Procedia, 2012, 33: 573-579.



[13] Menon P K, Sweriduk G D, Bilimoria K. New approach for modeling, analysis and control of air traffic flow[J]. AIAA Journal of Guidance, Control and Dynamics, 2004, 27(5): 737-744.



[14] Zhang Z N, Huang X Z, Wang L L. Modeling of air highway emergencies dissipation[J]. Journal of Henan University of Science and Technology: Natural Science, 2012, 33(3): 12-15 (in Chinese). 张兆宁, 黄雪征, 王莉莉. 空中高速路突发事件消散建模[J]. 河南科技大学学报:自然科学版, 2012, 33(3):12-15.



[15] Wang L L, Li H F. Research on air highway ramp control [J]. Journal of Air Force Engineering University: Nature Science, 2013, 14(2): 14-17 (in Chinese). 王莉莉, 李宏发. 空中高速路匝口流量控制[J]. 空军工程大学学报:自然科学版, 2013, 14(2): 14-17.



[16] Zhang X Y, Wang L L, Zhang Z N. Study on air traffic flow microscopic following model[J]. Journal of Civil Aviation Flight University of China, 2011, 22(4): 5-8 (in Chinese). 张新瑜, 王莉莉, 张兆宁. 空中交通流微观跟驰模型研究[J]. 中国民航飞行学院学报, 2011, 22(4): 5-8.



[17] Wang L L, Zhang X Y, Zhang Z N. Following phenomenon and air freeway flow model [J]. Journal of Southwest Jiaotong University, 2012, 47(1): 158-162 (in Chinese). 王莉莉, 张新瑜, 张兆宁. 空中高速路交通流的跟驰现象及流量模型[J]. 西南交通大学学报, 2012, 47(1):158-162.



[18] Hilburn B. Cognitive complexity in air traffic control: a literature review[R]. San Diego: Center for Human Performance Research, 2004.



[19] Prandini M, Piroddi L, Puechmorel S. Toward air traffic complexity assessment in new generation air traffic management systems[J]. Transactions on Intelligent Transportation Systems, 2011, 12(3): 809-818.



[20] Welch J D, Andrews J W, Martin B D, et al. Macroscopic workload model for estimating en route sector capacity[C]//7th USA/Europe Air Traffic Management R&D Seminar. Barcelona: FAA & EUROCONTROL, 2007: 1-10.



[21] Wu Y, Luo X, Liu Y G. Sliding mode control system modeling of car-following driving behavior[J]. Control Theory & Applications, 2008, 25(4): 671-676 (in Chinese). 吴洋, 罗霞, 刘昱岗. 跟驰驾驶行为的滑模控制系统建模[J]. 控制理论与应用, 2008, 25(4): 671-676.

文章导航

/