基于数据关联性分析的飞轮异常检测
收稿日期: 2014-04-01
修回日期: 2014-06-23
网络出版日期: 2015-03-31
基金资助
国家"973"计划 (2012CB720003)
Abnormality detection for flywheels based on data association analysis
Received date: 2014-04-01
Revised date: 2014-06-23
Online published: 2015-03-31
Supported by
National Basic Research Program of China (2012CB720003)
针对航天器早期故障在闭环系统下难以被检测、数学模型难以精确建立的问题,提出了一种基于数据关联性分析的归纳式系统异常监测(IMS)方法。该方法采用无监督学习的聚类算法,利用具有关联性的参数构建数据向量,通过聚类分析自动建立健康数据向量的族类阈值区间。关联关系的破坏将引起部分参数超出族类阈值区间,使系统的异常程度存在模糊性与随机性。引入云模型评价指标,将闭环系统异常程度的不确定性通过熵与超熵定量表示,从而更加准确地判断闭环系统的异常程度。仿真结果表明:该方法能够建立卫星飞轮闭环系统的族类知识库,并可以根据云模型提供的定性知识有效判断系统的异常程度。
龚学兵 , 王日新 , 徐敏强 . 基于数据关联性分析的飞轮异常检测[J]. 航空学报, 2015 , 36(3) : 898 -906 . DOI: 10.7527/S1000-6893.2014.0124
In order to solve the problem that the early faults hardly to be discovered in the spacecraft under closed-loop system and the precise mathematical model barely to be established, inductive monitoring system (IMS) based on data association analysis is proposed to detect the abnormality in closedloop system. An unsupervised learning clustering algorithm is employed and can automatically characterize the threshold interval of each cluster by analyzing the nominal system operation data vectors with parameter correlation. Some parameters in the vectors may overflow their corresponding cluster intervals because of correlation damages during the abnormal operations. And there are fuzziness and randomness in measuring the degree of abnormality in the system. By introducing the cloud model index,the backward cloud can quantify the uncertainty of abnormal degrees in the closedloop system by the entropy and the hyper entropy indices, so that the abnormal degrees could be judgedmore accurately . Simulation results show that the method employed can build the cluster knowledge bases of satellite flywheels with closedloop systems, and the normal cloud model can offer the qualitative knowledge about damages in the simulink model. effectively judge the degree of system abnormality according to the qualitative knowledge of the normal cloud model.
[1] Jin Y, Wang R X, Xu M Q. A fault diagnosis approach for spacecraft based on hierarchical transition system model[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 401-408 (in Chinese). 金洋, 王日新, 徐敏强. 基于分层传递系统模型的航天器故障诊断方法[J]. 航空学报, 2013, 34(2): 401-408.
[2] Qu C T, Zhang H Y. The fault diagnosis of momentum close-loop system used in satellite based on the UIO double observers[J]. Aerospace Control, 2005, 23(6): 66-71 (in Chinese). 曲春娣, 张洪钺. 卫星飞轮闭环系统的UIO双观测器故障诊断[J]. 航天控制, 2005, 23(6): 66-71.
[3] Li Z Z, Zhang R, Zhu Z C, et al. Extended Kalman filter-based fault detection for momentum wheel[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1614-1621 (in Chinese). 李知周, 张锐, 朱振才, 等. 基于扩展卡尔曼滤波的动量轮故障检测方法[J]. 航空学报, 2010, 31(8): 1614-1621.
[4] Wang H, Chai T Y, Ding J L, et al. Data driven fault diagnosis and fault tolerant control: some advances and possible new directions[J]. Acta Automatica Sinica, 2009, 35(6): 739-747.
[5] Li Z Q, Ma L, Khorasani K. Fault diagnosis of an actuator in the attitude control subsystem of a satellite using neural networks[C]//Proceedings of International Joint Conference on Neural Networks. Piscataway, NJ: IEEE, 2007: 2657-2662.
[6] Talebi H A, Khorasani K. A neural network-based multiplicative actuator fault detection and isolation of nonlinear systems[J]. IEEE Transactions on Control Systems Technology, 2013, 21(3): 842-851.
[7] Talebi H A, Patel R V. An intelligent fault detection and recovery scheme for reaction wheel actuator of satellite attitude control systems[C]//Proceedings of 2006 IEEE International Conference on Control Applications. Piscataway, NJ: IEEE, 2006: 2099-2104.
[8] Zhou D H, Liu Y, He X. Review on fault diagnosis techniques for closed-loop systems[J]. Acta Automatica Sinica, 2013, 39(11): 1933-1943 (in Chinese). 周东华, 刘洋, 何潇. 闭环系统故障诊断技术综述[J]. 自动化学报, 2013, 39(11): 1933-1943.
[9] Li L S. Anomaly detection in airline routine operations using flight data recorder data[D]. Cambridge: School of Aeronautics and Astronautics, 2013.
[10] Iverson D L. Inductive system health monitoring[C]//Proceedings of the 2004 International Conference on Artificial Intelligence. Las Vegas, VA: CSREA, 2004: 605-611.
[11] Iverson D L, Martin R, Schwabacher M, et al. General purpose data-driven system monitoring for space operations, AIAA-2009-1909[R]. Reston: AIAA, 2012.
[12] Matthews B L, Srivastava A N, Iverson D, et al. Space shuttle main propulsion system anomaly detection: a case study[J]. Aerospace and Electronic Systems Magazine, IEEE, 2011, 26(9): 4-13.
[13] Liu C Y, Feng M, Dai X J, et al. A new algorithm of backward cloud[J]. Acta Simulata Systematica Sinica, 2005, 16(11): 2417-2420 (in Chinese). 刘常昱, 冯芒, 戴晓军, 等. 基于云 X 信息的逆向云新算法[J]. 系统仿真学报, 2005, 16(11): 2417-2420.
[14] Du X Y, Yin Q J, Huang K L, et al. Transformation between qualitative variables and quantity based on cloud models and its application[J]. Systems Engineering and Electronics, 2008, 30(4): 772-776 (in Chinese). 杜湘瑜, 尹全军, 黄柯棣, 等. 基于云模型的定性定量转换方法及其应用[J]. 系统工程与电子技术, 2008, 30(4): 772-776.
[15] Al-Zyoud I A D, Khorasani K. Detection of actuator faults using a dynamic neural network for the attitude control subsystem of a satellite[C]//Proceedings of 2005 IEEE International Joint Conference on Neural Networks. Piscataway, NJ: IEEE, 2005: 1746-1751.
[16] Bialke B. High fidelity mathematical modeling of reaction wheel performance[J]. Advances in the Astronautical Sciences, 1998, 98: 483-496.
[17] Arif T T. Aerospace technologies advancements[M]. Rijeka, Croatia: InTech, 2010: 147-148.
[18] Wang J D, Sun Q, Pan Z Q, et al. Life prediction of control moment gyro based on performance degradation[J]. Science Technology and Engineering, 2013, 13(33): 9870-9876 (in Chinese). 王俊德, 孙权, 潘正强, 等. 基于性能退化的控制力矩陀螺寿命预测[J]. 科学技术与工程, 2013, 13(33): 9870-9876.
[19] Xu Y J. Calculation of moment of friction of high speed grease lubricated rolling bearing [J]. Journal of Zhu Zhou Teachers College, 2007, 12(5): 18-27 (in Chinese). 徐跃进. 高速脂润滑滚动轴承的摩擦力矩的计算[J]. 株洲师范高等专科学校学报, 2007, 12(5): 18-27.
[20] Ge Z Q, Song Z H. Distributed PCA model for plantwide process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(5): 1947-1957.
/
〈 | 〉 |