固体力学与飞行器总体设计

航天服关节力矩的数学模型

  • 张新军 ,
  • 李潭秋 ,
  • 张万欣 ,
  • 李元丰
展开
  • 中国航天员科研训练中心 人因工程重点实验室, 北京 100094
张新军 男,硕士研究生。主要研究方向:人机与环境工程、航天服工程。Tel: 010-66362326-19 E-mail: zhangxinjun@outlook.com

收稿日期: 2014-04-15

  修回日期: 2014-08-21

  网络出版日期: 2015-03-31

基金资助

航天科技创新基金

Mathematical model for spacesuit joint torque

  • ZHANG Xinjun ,
  • LI Tanqiu ,
  • ZHANG Wanxin ,
  • LI Yuanfeng
Expand
  • National Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China

Received date: 2014-04-15

  Revised date: 2014-08-21

  Online published: 2015-03-31

Supported by

Aerospace Science and Technology Innovation Fund

摘要

航天服关节力矩特性的数学表述是预测航天员出舱(EVA)作业强度、评估航天员疲劳度、规划EVA活动路径的重要基础。首先,分析了关节力矩的特性,提出建立数学模型的要求,阐述了Jiles-Atherton磁滞模型原理,以及磁滞模型与关节力矩特性的相合性。其次,利用模拟退火算法的思想对遗传算法进行了改进,并基于MATLAB软件实现。最终,对EVA航天服腕关节和肩关节力矩进行仿真,得到关节力矩在特定活动角度下的数学模型。仿真结果表明,针对关节力矩迟滞特性所得的关节力矩数学模型,能够更准确地描述关节活动力矩特性,计算所得模型可以更便捷地用于航天服工效学等相关研究领域。

本文引用格式

张新军 , 李潭秋 , 张万欣 , 李元丰 . 航天服关节力矩的数学模型[J]. 航空学报, 2015 , 36(3) : 865 -871 . DOI: 10.7527/S1000-6893.2014.0196

Abstract

The mathematical model of spacesuit joint torque makes a significant disparity in the prediction of extra-vehicular activity (EVA) task intensity, fatigue estimation of astronaut and planning EVA route. Firstly, the hysteresis of joint torque is analyzed and the requirement of the joint torque model application is stated. The Jiles-Atherton hysteresis model, as well as the relevance with hysteresis property of joint torque, is detailed. Then the simulated annealing is adopted to improve the genetic algorithm, which is realized by MATLAB. Finally, the mathematical models of the EVA spacesuit wrist joint torque and shoulder joint torque are simulated. The consequence of simulation elucidates that the mathematical model of spacesuit joint torque is feasible. What is more, the mathematical model of spacesuit joint torque will have a wide application in the research of spacesuit ergonomic and other fields.

参考文献

[1] Chen J S, Li T Q, Bian J M, et al. Spacesuit engineering[M]. Beijing: National Defense Industry Press, 2002: 1-23 (in Chinese). 陈景山, 李潭秋, 边晋梅, 等. 航天服工程[M]. 北京: 国防工业出版社, 2002: 1-23.



[2] Li T Q. Foreign information of manned space flight medico-engineering key technology monographic study. First episode: EVA spacesuit system[M]. Beijing: Institute of Space Medico-Engineering, 2001: 25-37 (in Chinese). 李潭秋. 国外中长期载人航天医学工程关键技术信息研究专题资料: 第一集 出舱航天服及其系统[M]. 北京: 航天医学工程研究所, 2001: 25-37.



[3] Matty J. Results and analysis from space suit joint torque testing, AIAA-2010-6211[R]. Reston: AIAA, 2010.



[4] Wen J. Research on key technologies of space suit mobility for EVA operation[D]. Beijing: Beijing Jiaotong University, 2011 (in Chinese). 文剑. 舱外航天服活动性能关键技术研究[D]. 北京: 北京交通大学, 2011.



[5] Schmidt P B. An investigation of space suit mobility with applications to EVA operations[D]. Cambridge: Massachusetts Institute of Technology, 2001.



[6] Schmidt P B, Newman D J, Hodgson E. Modeling space suit mobility: applications to design and operations[R]. Michigan: Society of Automotive Engineers, 2001.



[7] Newman D J, Schmide P B, Rahn D B, et al. Modeling the extravehicular mobility unit (EMU) space suit: physiological implications for extravehicular activity (EVA)[C]//International Conference on Environmental Systems, Toulouse. 2000: 10-13.



[8] Mayergoyz I D. The classical preisach model of hysteresis[M]. New York: Springer, 1991: 1-24.



[9] Visintin A. Differential models of hysteresis[M]. Berlin: Springer, 1994: 297-377.



[10] Jiles D C, Atherton D L. Theory of ferromagnetic hysteresis[J]. Journal of Magnetism and Magnetic Materials, 1986, 61(1): 48-60.



[11] Leite J V, Avila S L, Batistela N J, et al. Real coded genetic algorithm for Jiles-Atherton model parameters identification[J]. IEEE Transactions on Magnetics, 2004, 40(2): 888-891.



[12] Goldberg D E. Genetic algorithms in search, optimization, and machine learning[M]. Reading Menlo Park: Addison-Wesley, 1989: 5-14.



[13] Holland J H. Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence[M]. Michigan: University of Michigan Press, 1975: 45-63.



[14] Kirkpatrick S. Optimization by simulated annealing: quantitative studies[J]. Journal of Statistical Physics, 1984, 34(5-6): 975-986.



[15] Xu D J, Liu M K, Shen F, et al. Fast DGPS integer ambiguity resolution using adaptive genetic algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 371-377 (in Chinese). 徐定杰, 刘明凯, 沈锋, 等. 基于自适应遗传算法的 DGPS 整周模糊度快速解算[J]. 航空学报, 2013, 34(2): 371-377.



[16] An W G. Sructure optimization method based on a blending tapered model[J]. Chinese Journal of Aeronautics, 2013, 26(4): 943-947.



[17] Li Y Q, Wang R X, Xu M Q, et al. An improved genetic algorithm for a class of multi-resource range scheduling problem[J]. Journal of Astronautics, 2012, 33(1): 85-90 (in Chinese). 李玉庆, 王日新, 徐敏强, 等. 基于改进遗传算法的一类多资源测控调度问题研究[J]. 宇航学报, 2012, 33(1): 85-90.



[18] Mahfound S W, Goldberg D E. Parallel recombinative simulated annealing: a genetic algorithm[J]. Parallel Computing, 1995, 21(1): 1-28.

文章导航

/