月球探测器加速度响应预测的时域子结构方法
收稿日期: 2014-03-24
修回日期: 2014-04-25
网络出版日期: 2015-03-31
基金资助
北京理工大学基础研究基金(20120142009)
Acceleration response prediction for lunar lander using time-domain substructure methods
Received date: 2014-03-24
Revised date: 2014-04-25
Online published: 2015-03-31
Supported by
Beijing Institute of Technology Foundation for Basic Research (20120142009)
航天器结构的日益复杂和庞大为全系统级的动力学仿真带来了更大的困难和挑战,目前主要采用动态子结构法来提高分析求解效率,并解决不同设计部门之间的模型共享和技术保护问题。月球探测器软着陆阶段的冲击力学环境一般由加速度冲击响应谱描述,由于高阶振型对结构加速度响应的影响要比对位移响应的影响大得多,所以在小阻尼情况下,经典的基于模态的子结构方法在相同截断频率下对加速度响应的预测精度远低于位移响应。为解决这一问题,引进基于脉冲响应函数的时域子结构(IBS)方法,提出了一种适用于预测加速度响应的降阶形式的迭代求解格式。利用探测器着陆数值模拟试验中测得的缓冲机构作用力作为激励,分别采用固定界面模态综合(CB)法和IBS方法分析了月球探测器的加速度响应。数值算例表明,后者在计算精度和求解效率方面均高于前者,并说明基于脉冲响应函数的子结构方法适于对月球探测器加速度响应进行高精度快速预测。
董威利 , 刘莉 , 周思达 . 月球探测器加速度响应预测的时域子结构方法[J]. 航空学报, 2015 , 36(3) : 848 -856 . DOI: 10.7527/S1000-6893.2014.0080
The remarkable increase in the complexity and size of spacecraft has inflicted unprecedented difficulties and challenges on system level dynamics simulation. At present, dynamic substructure method is mainly adopted to improve the solution efficiency and protect the proprietary technologies in model sharing among different project groups. The acceleration shock response spectrum is commonly used to describe the impact dynamic environment during the soft landing phase. It is acknowledged that the effects of high order modes on acceleration responses are more significant than those on displacement responses, so under the condition of small damping, the acceleration prediction accuracy is far lower than the prediction accuracy of displacement obtained by classical substructure methods based on modal with identical cut-off frequency. To solve this problem, a recently proposed novel method called impulse based substructuring (IBS) method is applied and its reduced-order form of iterative solution format used to predict acceleration is presented. Based on the buffer load measured from the soft landing numerical experiment, the acceleration response of the lunar lander is respectively calculated through the Craig-Bampton (CB) method and the IBS method. A numerical example shows that the IBS method has higher accuracy and efficiency than CB method, and it is suitable for rapid prediction for acceleration of the lunar lander with high accuracy.
[1] Schwarz H A. Gesammelte mathematische abhandlungen[M]. Berlin: Springer-Verlag, 1890: 133-143.
[2] de Klerk D, Rixen D J, de Jong J. The frequency based substructuring (FBS) method reformulated according to the dual domain decomposition method[C]//24th IMAC. New York: Springer, 2006.
[3] Hurty H W. Vibration of structure systems by component mode synthesis[J]. Journal of the Engineering Mechanics Division, 1960, 86(4): 51-70.
[4] Gladwell G M L. Branch mode analysis of vibrating systems[J]. Journal of Sound and Vibration, 1964, 1(1): 41-59.
[5] Craig R R, Bampton M C C. Coupling of substructures for dynamics analysis[J]. AIAA Journal, 1968, 6(7): 1313-1319.
[6] Hurty W C. Dynamic analysis of structural systems using comtonent modes[J]. AIAA Journal, 1965, 3(4): 678-685.
[7] Hou S N. Review of modal synthesis techniques and a new approach[J]. Shock and Vibration Bulletin, 1969, 40(4): 25-39.
[8] Macneal R H. A hybrid method of component mode synthesis[J]. Computers & Structures, 1971, 1(4): 581-601.
[9] Rubin S. Improved component-mode representation for structural dynamic analysis[J]. AIAA Journal, 1975, 13(8): 995-1006.
[10] Craig R R, Chang C J. Free-interface methods of substructure coupling for dynamic analysis[J]. AIAA Journal, 1976, 4(11): 1633-1635.
[11] Wang W L, Du Z R, Chen K Y. A short commentary for modal synthesis techniques and a novel improvement[J]. Acta Aeronautica et Astronautica Sinica, 1979(3): 32-51 (in Chinese). 王文亮, 杜作润, 陈康元. 模态综合技术短评和一种新的改进[J]. 航空学报, 1979(3): 32-51.
[12] Benfield A W, Hruda F R. Vibration analysis of structures by component mode[J]. AIAA Journal, 1971, 9(7): 1255-1261.
[13] Biot M A. Vibration of crankshaft-propeller systems. New method of calculation[J]. Journal of the Aeronautical Sciences, 1940, 7(3): 107-112.
[14] Biot M A. Coupled oscillations of aircraft engine-propeller systems[J]. Journal of the Aeronautical Sciences, 1940, 7(9): 376-382.
[15] Serbin H. Vibrations of composite structures[J]. Journal of the Aeronautical Sciences, 1945, 12(1): 108-112.
[16] Sofrin T G. The combination of dynamical systems[J]. Journal of the Aeronautical Sciences, 1946, 13(6): 281-288.
[17] Bishop R E D, Johnson D C. The mechanics of vibration[M]. Cambridge: Cambridge University Press, 1960: 17-20.
[18] Rubin S. Mechanical immittance and transmission matrix concepts[J]. The Journal of the Acoustical Society of America, 1967, 41(5): 1171-1179.
[19] Jetmundsen B, Bielawa R L, Flannelly W G. Generalized frequency domain substructure synthesis[J]. Journal of the American Helicopter Society, 1988, 33(1): 55-64.
[20] Dong W L, Liu L, Zhou S D. Model reduction of soft landing dynamics for lunar lander with local nonlinearities[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1319-1328 (in Chinese). 董威利, 刘莉, 周思达. 含局部非线性的月球探测器软着陆动力学降阶分析[J]. 航空学报, 2014, 35(5): 1319-1328.
[21] Rixen D J. Substructuring using impulse response functions for impact analysis[C]//28th IMAC. New York: Springer, 2010: 637-646.
[22] Rixen D J, van der Valk P L C. An impulse based substructuring approach for impact analysis and load case simulations[J]. Journal of Sound and Vibration, 2013, 332(26): 7174-7190.
[23] Laurenson R M, Melliere R A, Mcgehee J R. Analysis of legged landers for the survivable soft landing of instrument payload[J]. Journal of Spacecraft and Rockets, 1973, 10(3): 208-214.
[24] Zeng F M, Yang J Z, Zhu W, et al. Research on landing impact attenuation performance of lunar lander[J]. Spacecraft Engineering, 2010(5): 43-49 (in Chinese). 曾福明, 杨建中, 朱汪, 等. 月球着陆器着陆缓冲性能研究[J]. 航天器工程, 2010(5): 43-49.
[25] Farhat C, Roux F X. A method of finite element tearing and interconnecting and its parallel solution algorithm[J]. International Journal for Numerical Methods in Engineering, 1991, 32(6): 1205-1227.
[26] van der Valk P L C, Rixen D J. An effective method for assembling impulse response functions to linear and non-linear finite element models[C]//30th IMAC. New York: Springer, 2012: 123-135.
[27] Rixen D J, Haghighat N. Truncating the impulse responses of substructures to speed up the impulse-based substructuring[C]//30th IMAC. New York: Springer, 2012: 137-148.
[28] van der Valk P L C, Rixen D J. Impulse based substructuring for coupling offshore structures and wind turbines in aero-elastic simulations[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: American Institute of Aeronautics and Astronautics Inc., 2012: 23-26.
[29] Otto O R, Laurenson R M, Melliere R A, et al. Analyses and limited evaluation of payload and legged landing system structures for the survivable soft landing of instrument payloads, NASA CR-111919[R]. Washington, D.C.: NASA, 1971.
[30] Hughes P C. Modal identities for elastic bodies, with application to vehicle dynamics and control[J]. Journal of Applied Mechanics, 1980, 47(1): 177-184.
[31] Lee A, Tsuha W S. Model reduction methodology for articulated, multiflexible body structures[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(1): 69-75.
[32] Hughes P C, Skelton R E. Modal truncation for flexible spacecraft[J]. Journal of Guidance, Control, and Dynamics, 1981, 4(3): 291-297.
[33] Hughes P C, Skelton R E. Controllability and observability for flexible spacecraft[J]. Journal of Guidance, Control, and Dynamics, 1980, 3(5): 452-459.
[34] Skelton R E, Gregory C Z. Measurement feedback and model reduction by modal cost analysis[C]//Proceedings of the 1979 Joint Automatic Control Conference. New York: American Institute Chememical Engineers, 1979: 211-218.
[35] Moore B C. Principal component analysis in linear systems: controllability, observability, and model reduction[J]. IEEE Transactions on Automatic Control, 1981, 26(1): 17-32.
[36] Jin R, Chen W, Simpson T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization, 2001, 23(1): 1-13.
/
〈 | 〉 |