现代超临界翼型设计及其风洞试验
收稿日期: 2014-05-26
修回日期: 2014-08-14
网络出版日期: 2015-03-31
基金资助
翼型叶栅空气动力学国家重点实验室基金 (9140C4203011005)
Design and wind tunnel test investigation of the modern supercritical airfoil
Received date: 2014-05-26
Revised date: 2014-08-14
Online published: 2015-03-31
Supported by
National Key Laboratory of Science and Technology on Aerodynamic Design and Research Foundation (9140C4203011005)
开展了现代超临界翼型的设计研究,对现役飞机的压力分布形态进行了分析,针对现役飞机在巡航状态和阻力发散点的压力分布进行对比,提取了现役飞机超临界剖面设计的要点。采用类函数/型函数变换(CST)参数化方法、基于二阶震荡及自然选择的随机权重混合粒子群算法(RwSecSelPSO)、雷诺平均Navier-Stokes(RANS)方程、Kriging代理模型结合定期望值型的目标函数建立了优化设计系统。针对提高阻力发散马赫数和降低巡航低头力矩的设计指标,利用优化设计系统通过调整目标期望值设计了一系列满足设计指标但阻力发散马赫数不同的超临界翼型,并选择了其中具有典型特性的翼型进行了对比分析,验证了提高阻力发散马赫数和低速失速特性的设计方法,指出了在阻力发散点形成平顶形压力分布的超临界翼型具有较好的综合性能。对设计的超临界翼型进行了高、低速风洞试验验证,试验结果表明:设计结果达到了设计指标要求,提出的低速改进方案有效,层流对超临界翼型失速特性影响较大。
孙智伟 , 白俊强 , 高正红 , 肖春生 , 郝礼书 . 现代超临界翼型设计及其风洞试验[J]. 航空学报, 2015 , 36(3) : 804 -818 . DOI: 10.7527/S1000-6893.2014.0188
In this paper, the aerodynamic design of modern supercritical airfoil is researched, the pressure distributions of outboard wing of two aircraft in service are analyzed at cruise and drag divergence point respectively, and some key points of supercritical section aerodynamic design are extracted. The class function/shape function transformation (CST) parametric method, Random weighted hybrid partical swarm optimization algorithm based on second order oscillation and natural selection (RwSecSelPSO), Reynolds averaged Navier-Stokes (RANS) equations and Kriging surrogate model combined with a kind of given expectation value cost function are used to establish the optimization system. In order to increase drag divergence Mach number and reduce the nose down moment, a series of airfoils satisfying the requirement but with different drag divergence Mach numbers is designed by the optimization system by adjusting the expectation value, meanwhile some airfoils with typical pressure distribution are compared and analyzed; the design principles and methods of improving drag divergence point and low-speed stall characteristic are verified and the airfoil which has flat topped pressure distribution at drag divergence point has better performance. Wind-tunnel tests are conducted for stall improvement method and transonic aerodynamic characteristic; the wind-tunnel test results indicate that the aerodynamic design satisfies the requirement and the stall improvement method is effective, while the laminar flow affects the stall characteristic dramatically.
[1] Whitcomb R T. Review of NASA supercritical airfoils[C]//International Council of the Aeronautical Sciences Congress, 9th. Haifa, Israel: ICAS, 1974.
[2] Dang T H. Development of NASA supercritical airfoils[J]. Design and Investigation of Civil Aircraft, 2005(2): 29-49 (in Chinese). 党铁红. NASA超临界翼型的发展[J]. 民用飞机设计与研究, 2005(2): 29-49.
[3] Harris C D. NASA supercritical airfoils, NASA Technical Paper 2969[R]. Washington, D. C.: NASA, 1990.
[4] Omar E, Ziertem T, Mahal A. Two-dimensional wing-tunnel tests of a NASA supercritical airfoil with various high-lift systems, NASA/CR-2214[R]. Hampton: NASA Langley Research Center, 1973.
[5] Cosenza C J, Kummeth L J. Transonic aircraft technology/TACT/ program[C]//AIAA, Aerodynamic Testing Conference 8th. Reston: AIAA, 1974.
[6] Lores M E, Smith P R, Hicks R M. Supercritical wing design using numerical optimization and comparisons with experiment[C]//AIAA, Aerospace Sciences Meeting 17th. Reston: AIAA, 1979.
[7] Lowrey R. Evolution of transport wings from C-130, C-141, C-5 to C-XX[C]//AIAA, The Evolution of Aircraft Wing Design: Proceedings of the Symposium. Reston: AIAA, 1980.
[8] Reaser J S, Hallissy J B, Campbell R L. Design and true Reynolds number 2-D testing of an advanced technology airfoil[C]//AIAA,Applied Aerodynamics Conference. Reston: AIAA, 1983.
[9] Tranen T L. A rapid computer aided transonic airfoil design method[C]//AIAA, Fluid and Plasma Dynamic Conference 7th. Reston: AIAA, 1974.
[10] Carlson L A. Transonic airfoil design using cartesian coordinates[J]. Journal of Aircraft, 1976, 13(5): 349-356.
[11] Sobieczky H, Yu N J, Fung K Y, et al. New method for designing shock-free transonic configurations[J]. AIAA Journal, 1979, 17(7): 722-729.
[12] Weed R A, Carlson L A. Combined direct/inverse three dimensional transonic wing design with visous and wing/body effects, AD-A 165[R]. Bethesda, Maryland: David W. Taylor Naval Ship Research and Development Center, 1984.
[13] Takanashi S. Iterative three-dimensional transonic wing design using intergral equations[J]. Journal of Aircraft, 1985, 22(8): 655-660.
[14] Hua J. Investigation of supercritical wing and airfoil design[D]. Xi'an: Northwestern Polytechnical University, 1989 (in Chinese). 华俊. 跨音速机翼和翼型的设计研究[D]. 西安: 西北工业大学, 1989.
[15] Jameson A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3): 233-260.
[16] Quagliarella D, Cioppa A D. Genetic algorithms applied to the aerodynamic design of transonic airfoils[J]. Journal of Aircraft, 1995, 32(4): 889-891.
[17] Holst T L, Pulliam T H. Aerodynamic shape optimization using a real number encoded genetic algorithm[C]//AIAA, Applied Aerodynamics Conference 19th. Reston: AIAA, 2001.
[18] Shinkyu J, Mitsuhiro M, Kazuomi Y. Efficient optimization design method using kriging model[J]. Journal of Aircraft, 2005, 42(2): 413-420.
[19] Wang X P, Gao Z H. Aerodynamic optimization design of airfoil based on genetic algorithm[J]. Acta Aerodynamica Sinica, 2000, 18(3): 324-329 (in Chinese). 王晓鹏, 高正红. 基于遗传算法的翼型气动优化设计[J]. 空气动力学学报, 2000, 18(3): 324-329.
[20] Zhan H, Xu X P, Zhu J. Multi-point optimization for aerodynamic shape[J]. Aeronautical Computing Technique, 2007, 37(1): 19-21 (in Chinese). 詹浩, 许小平, 朱军. 气动外形多点优化设计研究[J]. 航空计算技术, 2007; 37(1): 19-21.
[21] Bai J Q, Wang B, Sun Z W, et al. The research of robust supercritical airfoil design optimization[J]. Acta Aerodynamica Sinica, 2011, 29(4): 459-463 (in Chinese). 白俊强, 王波, 孙智伟, 等. 超临界翼型稳健型优化设计研究[J]. 空气动力学学报, 2011, 29(4): 459-463.
[22] Huang Y, Chen Z B. An investigation for the complex-variable method in shape optimization of transonic airfoils[J]. Acta Aerodynamica Sinica, 2005, 23(4): 501-505 (in Chinese). 黄勇, 陈作斌. 跨声速翼型优化设计的复变量方法应用研究[J]. 空气动力学学报, 2005, 23(4): 501-505.
[23] Qiao Z D. Design and choosen of the airfoils[M]//Fang B R. Aircraft Aerodynamic Configuration Design. Beijing: Aviation Industry Press, 1997: 499-540 (in Chinese). 乔志德. 翼型的选择与设计[M]//方宝瑞. 飞机气动布局设计. 北京: 航空工业出版社, 1997: 499-540.
[24] Shen K Y, Zhang X H. Aerodynamic design criteria, design procedures and a design example of supercritical wing[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(4): 113-117 (in Chinese). 沈克杨, 张锡华. 超临界机翼气动设计的准则、流程和设计实例[J]. 航空学报, 1993, 14(4): 113-117.
[25] Chen Y C, Si J T, Han X L, et al. Investigation of transition effect on the pressure distribution of supercritical wing[J]. Acta Aerodynamica Sinica, 2003, 21(4): 470-475 (in Chinese). 陈迎春, 司江涛, 韩先锂,等. 转捩对超临界机翼压力分布的影响分析[J]. 空气动力学学报, 2003, 21(4): 470-475.
[26] Chen S, Bai J Q, Sun Z W, et al. Aerodynamic optimization design of airfoil using DFFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 695-705 (in Chinese). 陈颂, 白俊强, 孙智伟, 等. 基于DFFD技术的翼型气动优化设计[J]. 航空学报, 2014, 35(3): 695-705.
[27] Yang K M, Zhang W M, Wang B. Research of supercritical wing optimization based on aerodynamic design principle of wing[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 263-272 (in Chinese). 杨昆淼, 张卫民, 王斌. 基于机翼气动设计准则的超临界机翼气动优化研究[J]. 航空学报, 2013, 34(2): 263-272.
[28] Li J, Gao Z H, Huang J T, et al. Aerodynamic optimization system based on CST technique[J]. Acta Aerodynamica Sinica, 2012, 30(4): 443-449 (in Chinese). 李静, 高正红, 黄江涛, 等. 基于CST参数化方法气动优化设计研究[J]. 空气动力学学报, 2012, 30(4): 443-449.
[29] Shi Q, Li H. Numerical simulation on action of flow control and wave drag reduction effect with contour bump located on the supercritical airfoil[J]. Acta Aerodynamica Sinica, 2010, 28(4): 462-465 (in Chinese). 石清, 李桦. 实体鼓包对超临界翼型的流动控制和减阻研究[J]. 空气动力学学报, 2010, 28(4): 462-465.
[30] Gao Z H, Bai J Q. C919 airplane airfoil design and analysis report[R]. Xi'an: Northwestern Polytechnical University,National Key Laboratory of Aerodynamic Design and Research, 2008 (in Chinese). 高正红, 白俊强. C919大型客机翼型设计分析报告[R]. 西安: 西北工业大学,翼型叶栅空气动力国防科技重点实验室, 2008.
[31] Burdges K P. A synthesis of transonic, 2-D airfoil technology[C]//AIAA Aircraft Design, Flight Test and Operations Meeting 5th. Reston: AIAA, 1973.
[32] Obert E. Aerodynamic design of transport aircraft[M]. Netherlands: IOS Press, 2009: 75-106.
[33] Zhang Y F. Aerodynamic optimization of civil aircraft design based on advanced computational fluid dynamics[D]. Beijing: Tsinghua University, 2010 (in Chinese). 张宇飞. 基于先进CFD方法的民用客机气动优化设计[D]. 北京: 清华大学, 2010.
[34] Kulfan B M. A universal parameteric geometry representation method-"CST"[C]//AIAA Aerospace Sciences Meeting and Exhibit 45th. Reston: AIAA, 2007.
[35] Kulfan B M, Bussoletti J E. "Fundamental" parametric geometry representations for aircraft component shapes[C]//AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference 11th. Reston: AIAA, 2006.
[36] Bai J Q, Yin G L, Sun Z W. Random weighted hybrid particle swarm optimization algorithm based on second order oscillation and natural selection[J]. Control and Decision, 2012, 27(10): 1459-1464 (in Chinese). 白俊强, 尹戈玲, 孙智伟. 基于二阶振荡及自然选择的随机权重混合粒子群算法[J]. 控制与决策, 2012, 27(10): 1459-1464.
[37] Chao D D, Dam C P. Airfoil drag prediction and decomposition[J]. Journal of Aircraft, 1998, 36(4): 675-681.
[38] Cook P H, McDonald M A, Firmin M C P. Aerofoil RAE 2822—pressure distributions, and boundary layer and wake measurements, AGARD AR-138[R]. Neuilly Sur Seine, France: AGARD, 1979.
[39] Smith R E. Transfinite interpolation (TFI) generation systems[M]//Thompson J F, Soni B K, Weatherill N P. Handbook of Grid Generation. New York: CRC Press, 1998:108-122.
/
〈 | 〉 |