流体力学与飞行力学

合成射流大攻角非对称涡控制的试验研究

  • 李斌斌 ,
  • 姜裕标 ,
  • 顾蕴松 ,
  • 程克明
展开
  • 1. 中国空气动力研究与发展中心 空气动力学国家实验室, 绵阳 621000;
    2. 中国空气动力研究与发展中心 低速空气动力研究所, 绵阳 621000;
    3. 南京航空航天大学 航空宇航学院, 南京 210016
姜裕标 男, 硕士, 研究员。主要研究方向: 非定常空气动力学。Tel: 0816-2461009 E-mail: ybjiang@sohu.com;顾蕴松 男, 博士, 教授。主要研究方向: 实验空气动力学、流体流动测试技术、流动控制。Tel: 025-84896361 E-mail: yunsonggu@nuaa.edu.cn

收稿日期: 2014-04-03

  修回日期: 2014-08-13

  网络出版日期: 2015-03-31

基金资助

空气动力学国家重点实验室基金(JBKY14010201)

Experimental study of asymmetric vortex control at high angle of attack with synthetic jet

  • LI Binbin ,
  • JIANG Yubiao ,
  • GU Yunsong ,
  • CHENG Keming
Expand
  • 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Low Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    3. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2014-04-03

  Revised date: 2014-08-13

  Online published: 2015-03-31

Supported by

State Key Laboratory Foundation of Aerodynamics (JBKY14010201)

摘要

利用合成射流对细长旋成体大攻角非对称涡控制进行了研究,基于合成射流激励器设计了一频率高达1 kHz的非定常小扰动控制机构,并将其成功应用于大攻角非对称涡主动流动控制。应用天平测力和七孔探针流场测试技术,研究了合成射流非定常小扰动电压和频率对非对称涡的控制特性和规律。结果表明,采用合成射流能够完全消除背涡的非对称性,扰动频率是影响非对称涡控制的一个关键参数,高频扰动下模型背风区非对称涡结构趋于无控制流态。且文中结果发现,当攻角α=57.5°、非定常小扰动频率fs=150 Hz时,即可将非对称涡完全控制成为对称涡。

本文引用格式

李斌斌 , 姜裕标 , 顾蕴松 , 程克明 . 合成射流大攻角非对称涡控制的试验研究[J]. 航空学报, 2015 , 36(3) : 764 -771 . DOI: 10.7527/S1000-6893.2014.0184

Abstract

The research of high angle of attack asymmetric vortex control for slender body has been conducted by using synthetic jet, a frequency up to 1 kHz unsteady small perturbation control devices based on synthetic jet actuator is designed, which has been successfully applied to asymmetric vortex active flow control at high angle of attack. With techniques of balance force and seven holes probe flow field measurements, the characteristics of asymmetric vortex control by the synthetic jet unsteady small perturbation voltage and frequency are explored. The results show that the synthetic jet can completely control the asymmetry vortex, frequency is the key parameter that would affect asymmetric vortex control and high frequency perturbation asymmetric vortex structure tends to be the uncontrolled flow pattern. And it is found that when angle of attack α is 57.5° and unsteady small perturbation frequency fs is 150 Hz, the complete control of the asymmetric vortex can be realized, converting into symmetric vortex pattern.

参考文献

[1] Hall R M. Forebody and missile side forces and the time analogy, AIAA-1987-0327[R]. Reston: AIAA, 1987.







[2] Lamont P J. Pressure around an inclined ogive cylinder with laminar, transitional, or turbulent separation[J]. AIAA Journal, 1982, 20(11): 1492-1496.







[3] Ericsson L E. Sources of high alpha vortex asymmetry at zero sideslip[J]. Journal of Aircraft, 1992, 29(6): 1086-1090.







[4] Zhang H X, Ran Z. On the structural stability of the flows over slenders at angle of attack[J]. Acta Aerodynamica Sinica, 1997, 15(1): 20-26 (in Chinese). 张涵信, 冉政. 细长锥体有攻角绕流对称流态到非对称流态的结构稳定性研究[J]. 空气动力学学报, 1997, 15(1): 20-26.







[5] Liu P Q, Deng X Y, Kong F M. Experimental investigation of asymmetry vortex unsteadiness over slender cylinders[J]. Experiments and Measurements in Fluid Mechanics, 2002, 16(4): 39-46 (in Chinese). 刘沛清, 邓学蓥, 孔繁美. 绕细长旋成体非对称涡非定常性的实验研究[J]. 流体力学实验与测量, 2002, 16(4): 39-46.







[6] Wang Y K, Wei Z F, Deng X Y. An experimental study on forebody vortex flow control technique using combined perturbation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(4): 433-441 (in Chinese). 王延奎, 魏占峰, 邓学蓥. 飞机大迎角非对称涡组合扰动主动控制研究[J]. 力学学报, 2007, 39(4): 433-441.







[7] Shah G H, Granda J N. Application of forebody strakes for directional stability and control of transport aircraft, AIAA-1998-4448[R]. Reston: AIAA, 1998.







[8] Yanta W J, Wardlaw A B. Flow field about and forces on slender bordies at high angles of attack[J]. AIAA Journal, 1981, 19(3): 296-302.







[9] Cobleigh B R. High angle of attack yawing moment asymmetry of the X-31 aircraft from flight test, NASA CR 186030[R]. Washington, D.C.: NASA, 1994.







[10] Murri D G, Shah G H, Dicarlo D J. Actuated forebody strake controls for the F-18 high alpha research vehicle [J]. Journal of Aircraft, 1995, 32(3): 555-562.







[11] Fisher D F, Murri D G. Forebody flow visualization on the F-18 harv with actuated forebody strakes, NASA TM 206556[R]. Washington, D.C.: NASA, 1998.







[12] Roos E W. Microblowing: an effective, efficient method of vortex asymmetry management, AIAA-2000-4416 [R]. Reston: AIAA, 2000.







[13] Takahara Y, Rock S M. Nonlinear flight control using forebody tangential blowing[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(6): 1157-1166.







[14] Williams D. A review of forebody vortex control scenarios, AIAA-1997-1967[R]. Reston: AIAA, 1997.







[15] Gu Y S, Ming X. Forebody vortices control using a fast swinging micro-tip-strake at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(2): 102-106 (in Chinese). 顾蕴松, 明晓. 大攻角非对称流动的非定常弱扰动控制[J]. 航空学报, 2003, 24(2): 102-106.







[16] Gu Y S, Li B B, Cheng K M. High angle of attack asymmetric vortex synthetic jet unsteady small disturbance control device: China. CN102417031A[P]. 2011-10-20 (in Chinese). 顾蕴松, 李斌斌, 程克明. 大攻角非对称涡合成射流非定常小扰动控制装置: 中国. CN102417031A[P]. 2011-10-20.

文章导航

/