基于被动二次流的射流偏转比例控制
收稿日期: 2014-03-31
修回日期: 2014-06-09
网络出版日期: 2015-03-31
基金资助
江苏省普通高校研究生科研创新计划资助项目(CXLX13_131);中央高校基本科研业务费专项资金资助;江苏高校优势学科建设工程资助项目
Proportional control of jet deflection with passive secondary flow
Received date: 2014-03-31
Revised date: 2014-06-09
Online published: 2015-03-31
Supported by
Funding of Jiangsu Innovation Program for Graduate Education (CXLX13_131); Fundamental Research Funds for the Central Universities; Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
射流偏转比例控制一直是流体式推力矢量(FTV)技术所追求的目标之一。本文研制了一种二元流体式推力矢量喷管,采用能量消耗极小的被动二次流与Conada壁面相结合的方式对低速主射流进行矢量偏转控制,通过改变喷管控制缝入口面积实现了主射流偏转的连续比例控制。对低速主射流两侧控制缝压力和射流偏转角进行测量,获得了主射流偏转角随两侧控制缝压力差系数变化的控制规律曲线。结果表明:低速主射流最大偏转角达到19°,在偏转范围内控制曲线分为敏感区和迟钝区。敏感区的控制曲线近似线性,斜率较大,范围约为±15°;而迟钝区的控制曲线斜率较小,在两侧15°~19°的范围内。该结果证实了主射流两侧的压力差是造成其偏转的直接原因。
曹永飞 , 顾蕴松 , 程克明 , 肖中云 , 陈作斌 , 何开锋 . 基于被动二次流的射流偏转比例控制[J]. 航空学报, 2015 , 36(3) : 757 -763 . DOI: 10.7527/S1000-6893.2014.0116
The proportional control of jet deflection is always one of the goals of fluidic thrust vectoring (FTV) technology. A two-dimensional new fluidic thrust vectoring nozzle is designed and manufactured. Thrust vector control of the low-speed primary jet is investigated using passive secondary flow and Conada wall surfaces, which has ultra-low energy consumption. The primary jet can be continuously and proportionally vectored by changing the area of entrance of nozzle control slot. The pressure of control slots on both sides and deflection angle of the primary jet are measured; the control curve of the primary jet deflection angle versus the coefficient of pressure difference between control slots is obtained. The results show that the maximum deflection angle of the low-speed primary jet is up to 19°; the control curve is divided into sensitive zone and inert zone in the deflection range. The control curve of sensitive zone is approximately linear with steep slope, within a range of ±15°; while the inert zones are from -19° to -15° and from +15° to +19°, where the control curve slope is gentle. The experimental results demonstrate that the pressure difference between both sides of the primary jet is the direct cause of jet deflection.
[1] Fang C D. Developing status of thrust vectoring control technology[J]. Aeronautical Science and Technology, 1998(2): 10-12 (in Chinese). 方昌德.飞机推力矢量技术发展综述[J]. 航空科学技术, 1998(2): 10-12.
[2] Deere K A. Summary of fluidic thrust vectoring research conducted at NASA Langley Research Center, AIAA-2003-3800[R]. Reston: AIAA, 2003.
[3] Bursey R, Dickinson R. Flight test results of the F-15 SMTD thrust vectoring/thrust reversing exhaust nozzle, AIAA-1990-1906[R]. Reston: AIAA, 1990.
[4] Hunter C A, Deere K A. Computational investigation of fluidic counterflow thrust vectoring, AIAA-1999-2669[R]. Reston: AIAA, 1999.
[5] Mason M S, Crowther W J. Fluidic thrust vectoring for low observable air vehicles, AIAA-2004-2210[R]. Reston: AIAA, 2004.
[6] Bougas L, Hornung M. Propulsion system integration and thrust vectoring aspects for scaled jet UAVs[J]. CEAS Aeronautical Journal, 2013, 4(3): 327-343.
[7] Giuliano V J, Wing D J. Static investigation of a fixed-aperture nozzle employing fluidic injection for multi axis thrust vector control, AIAA-1997-3149[R]. Reston: AIAA, 1997.
[8] Wang Z X, Wang Y N, Li Z J, et al. Experiment on fluidic thrust-vectoring nozzle based on shock control concept[J]. Journal of Propulsion Technology, 2010, 31(6): 751-756 (in Chinese). 王占学, 王玉男, 李志杰, 等. 基于激波控制的流体推力矢量喷管试验[J]. 推进技术, 2010, 31(6): 751-756.
[9] Qiao W Y, Cai Y H. A study on the two-dimensional thrust vectoring nozzle with secondary flow injection[J]. Journal of Aerospace Power, 2001, 16(3): 273-278 (in Chinese). 乔渭阳, 蔡元虎. 基于次流喷射控制推力矢量喷管的实验及数值研究[J]. 航空动力学报, 2001, 16(3): 273-278.
[10] Zmijanovic V, Lago V, Palerm S, et al. Thrust shock vector control of an axisymmetric CD nozzle via transverse gas injection[C]//28th International Symposium on Shock Waves, 2012: 171-177.
[11] Li W Q, Song W Y, Luo F T. Experimental and numerical investigations of shock induced thrust vectoring nozzle[J]. Journal of Aerospace Power, 2012, 27(7): 1571-1578 (in Chinese). 李卫强, 宋文艳, 罗飞腾. 激波诱导控制推力矢量喷管实验及数值计算[J]. 航空动力学报, 2012, 27(7): 1571-1578.
[12] Miller D N, Yagle P J, Hamstra J W. Fluidic throat skewing for thrust vectoring in fixed geometry nozzles, AIAA-1999-0365[R]. Reston: AIAA, 1999.
[13] Strykowski P J. An experimental modeling study of jet attachment during counterflow thrust vectoring, NASA-CR-204436[R]. Washington, D.C.: NASA, 1996.
[14] van der Veer M R, Strykowski P J. Counterflow thrust vector control of subsonic jets-continuous and bistable regimes[J]. AIAA Journal, 1997, 13(3): 412-420.
[15] Jeffrey D F. Experimental study of a nozzle using fluidic counterflow for thrust vectoring, AIAA-1998-3255[R]. Reston: AIAA, 1998.
[16] Gillgrist R D, Forliti D J, Strykowski P J. On the mechanisms affecting fluidic vectoring using suction[J]. Journal of Fluids Engineering, 2007, 129(1): 91-99.
[17] Yang J J, Wang M S. Numerical research on basic flow characteristics of counterflow thrust vectoring nozzle[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 769-775 (in Chinese). 杨建军, 汪明生. 逆流推力矢量喷管基本流动特征的数值研究[J]. 航空学报, 2008, 29(4): 769-775.
[18] Heo J Y, Yoo K H. Fluidic thrust vector control of the supersonic jet using the co-flow injection, AIAA-2009-5174[R]. Reston: AIAA, 2009.
[19] Xiao Z Y, Gu Y S, Jiang X, et al. A new fluidic thrust vectoring technique based on ejecting mixing effects[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 1967-1974 (in Chinese). 肖中云, 顾蕴松, 江雄, 等. 一种基于引射效应的流体推力矢量新技术[J]. 航空学报, 2012, 33(11): 1967-1974.
/
〈 | 〉 |