激光吸收光谱技术测量非均匀燃烧流场研究进展
收稿日期: 2014-06-23
修回日期: 2014-08-01
网络出版日期: 2015-03-31
基金资助
国家自然科学基金 (11372356)
Review on the research of non-uniform combustion field measurement using laser absorption spectroscopy technique
Received date: 2014-06-23
Revised date: 2014-08-01
Online published: 2015-03-31
Supported by
National Natural Science Foundation of China (11372356)
可调谐半导体激光吸收光谱技术(TDLAS)具有非侵入性、灵敏度高和时间响应快等优点,将激光吸收光谱技术与最小二乘法、计算机断层扫描重建技术(CT)相结合,可以实现对非均匀燃烧流场的分布测量。首先简要介绍了激光吸收光谱技术的发展历程及测量基本原理,然后分别对激光吸收光谱技术测量非均匀流场一维分布、二维分布的国内外研究现状及关键技术进行了综述,比较分析了二维非均匀流场诊断实验中旋转和固定两种安装模式的优缺点及相对应的光线布局,总结了用于流场二维重建的相关重建算法,最后讨论了激光吸收光谱技术测量非均匀流场研究工作的发展趋势和有待解决的相关问题。
关键词: 激光吸收光谱; 非均匀燃烧流场; 最小二乘法; 计算机断层扫描重建技术; 重建算法
洪延姬 , 宋俊玲 , 王广宇 , 刘昭然 . 激光吸收光谱技术测量非均匀燃烧流场研究进展[J]. 航空学报, 2015 , 36(3) : 724 -736 . DOI: 10.7527/S1000-6893.2014.0173
Tunable diode laser absorption spectroscopy (TDLAS) is characterized by non-invasiveness, high sensitivity and fast response. Combined the laser absorption spectroscopy technique with least-square fitting or computed tomography (CT), the non-uniform spatially distribution of combustion field can be measured. First, the development of laser absorption spectroscopy technique and the basic concept are summarized. Then, we review the latest development and key technologies for non-uniform flow field in one-dimensional and two-dimensional measurements. A comparison of installation mode between fixed and rotated mode for two-dimensional non-uniform flow reconstruction is analyzed. The relative optical layout and reconstruction method are summarized. Finally, the development trend and problems for non-uniform flow field based on laser absorption spectroscopy are analyzed.
[1] Weinstein L M. Large-field high-brightness focusing schlieren system[J]. AIAA Journal, 1993, 31(7): 1250-1255.
[2] Ryan M, Gruber M R, Carter C D, et al. Planar laser-induced fluorescence imaging of OH in a supersonic combustor fueled with ethylene and methane[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2429-2436.
[3] Cheng J X, Xie X S. Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications[J]. Journal of Physical Chemistry B, 2004, 108(3): 827-840.
[4] Li J Y, Du Z H, Qi R B, et al. Measurement of absorption spectra of CO2 at 6 320-6 336 cm-1 using temperature tuning technique[J]. Acta Optica Sinica, 2012, 32(1): 298-303 (in Chinese). 李金义, 杜振辉, 齐汝宾, 等. 温度调谐技术测量CO2在6 320-6 336 cm-1 波段的吸收光谱[J]. 光学学报, 2012, 32(1): 298-303.
[5] Liu X, Zhou X, Jeffries J B, et al. Experimental study of H2O spectroscopic parameters in the near-IR (6 940-7 440 cm-1) for gas sensing applications at elevated temperature[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 103(3): 565-577.
[6] Jewell J L, Lee Y H, Harbison J P, et al. Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization[J]. IEEE Journal of Quantum Electronic, 1991, 27(6): 1332-1346.
[7] Hanson R K, Kuntz P A, Kruger C H. High-resolution spectroscopy of combustion gases using a tunable IR diode laser[J]. Applied Optics, 1977, 16(8): 2045-2048.
[8] Philippe L C, Hanson R K. Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows[J]. Applied Optics, 1993, 32(30): 6090-6103.
[9] Liu X. Line-of-sight absorption of H2O vapor: gas temperature sensing in uniform and nonuniform flows[D]. Stanford: Stanford University, 2006.
[10] Sanders S T, Wang J, Jeffries J B, et al. Diode-laser absorption sensor for line-of-sight gas temperature distributions [J]. Applied Optics, 2001, 40(24): 4404-4415.
[11] Liu X, Jeffries J B, Hanson R K. Measurement of non-uniform temperature distributions using line-of-sight absorption spectroscopy[J]. AIAA Journal, 2007, 45(2): 411-419.
[12] Li N, Yan J H, Wang F, et al. Measurement on gas temperature distribution by tunable diode laser absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2008, 28(8): 1708-1712 (in Chinese). 李宁, 严建华, 王飞, 等. 利用可调谐激光吸收光谱技术对光路上气体温度分布的测量[J]. 光谱学与光谱分析, 2008, 28(8): 1708-1712.
[13] Yu X L, Li F, Chen L H, et al. Spatial resolved temperature measurement based on absorption spectroscopy using a single tunable diode laser[J]. Acta Mechanical Sinica, 2010, 26(1): 147-149.
[14] Lou N Z, Li N, Weng C S. In situ temperature measurement by absorption spectroscopy based on time division multiplexing technology[J]. Spectroscopy and Spectral Analysis, 2012, 32(5): 1329-1333 (in Chinese). 娄南征, 李宁, 翁春生. 基于时分复用技术的吸收光谱气体温度在线测量研究[J]. 光谱学与光谱分析, 2012, 32(5): 1329-1333.
[15] Song J L, Hong Y J, Wang G Y, et al. Measurement of nonuniform temperature and concentration distribution by absorption spectroscopy based on least-square fitting[J]. Spectroscopy and Spectral Analysis, 2013, 33(8): 2047-2050 (in Chinese). 宋俊玲, 洪延姬, 王广宇, 等. 基于最小二乘法的激光吸收光谱非均匀温度浓度分布研究[J]. 光谱学与光谱分析, 2013, 33(8): 2047-2050.
[16] Liu C, Xu L, Cao Z. Measurement of nonuniform temperature and concentration distributions by combining line of sight tunable diode laser absorption spectroscopy with regularization methods[J]. Applied Optics, 2013, 52(20): 4827-4842.
[17] Emmerman P J, Goulard R, Santoro R J, et al. Multiangular absorption diagnostics of a turbulent argon-methane jet[J]. Journal of Energy, 1980, 4(2): 70-77.
[18] Bain J R P. Near infrared tunable diode laser spectroscopy for aero engine related applications[D]. Glasgow: University of Strathclyde, 2012.
[19] Busa K M, Ellison E N, McGovern B J, et al. Measurements on NASA Langley durable combustor rig by TDLAT preliminary results[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013.
[20] Brown M S. Application of diode-laser-based measurements in hypersonic flows[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012.
[21] Kasyutich V L, Martin P A. Towards a two-dimensional concentration and temperature laser absorption tomography sensor system[J]. Applied Physics B, 2011, 102(1): 149-162.
[22] Carey S J, McCann H, Hindle F P, et al. Chemical species tomography by near infrared absorption[J]. Chemical Engineering Journal, 2000, 77(1): 111-118.
[23] Busa K M, Bryner E, McDaniel J C, et al. Demonstration of capability of water flux measurement in a scramjet combustor using tunable diode laser absorption tomography and stereoscopic PIV[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011.
[24] Jackson K R, Gruber M R, Buccellato S. HIFiRE flight 2 overview and status update 2011, AIAA-2011-2202[R]. Reston: AIAA, 2011.
[25] Brown M S, Herring G C, Cabell K, et al. Optical measurement at the combustion exit of the HIFiRE 2 ground test engine[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012.
[26] Kessler W J, Allen M G, Lo E Y, et al. Tomographic reconstruction of air temperature and density profiles using tunable diode laser absorption measurements on O2[C]//26th AIAA Plasma Dynamics and Lasers Conference. Reston: AIAA, 1995.
[27] ZoloBOSS boiler optimization spectroscopy sensor operator manual[EB/OL]. http://zolotech.com/.
[28] Watt D W, Upton T D, Verhoeven D D. Spectroscopic emission tomography for propulsion diagnostics[C]//39th Aerospace Science Meeting & Exhibit. Reston: AIAA, 2001.
[29] Wang F, Cen K F, Li N, et al. Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode[J]. Measurement Science and Technology, 2010, 21(4): 1-10.
[30] Wright P, Garcia-Stewart C A, Carey S J, et al. Toward in-cylinder absorption tomography in a production engine[J]. Applied Optics, 2005, 44(31): 6578-6592.
[31] Wright P, Terzija N, Davidson J L, et al. High-speed chemical species tomography in a multi-cylinder automotive engine[J]. Chemical Engineering Journal, 2010, 158(1): 2-10.
[32] Terzija N, Davidson J L, Garcia-Stewart C A, et al. Image optimization for chemical species tomography with an irregular and sparse beam array[J]. Measurement Science and Technology, 2008, 19(9): 094007.
[33] Daun K J. Infrared species limited data tomography through Tikhonov reconstruction [J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2010, 111(1): 105-115.
[34] Twynstra M G, Daun K J. Laser-absorption tomography beam arrangement optimization using resolution matrices [J]. Applied Optics, 2012, 51(29): 7059-7068.
[35] Beiting E J. Fast optical absorption tomography [J]. Optics Letters, 1991, 16(16): 1280-1282.
[36] Todd L A, Bhattachryya R. Tomographic reconstruction of air pollutants: evaluation of measurement geometries [J]. Applied Optics, 1997, 36(30): 7678-7688.
[37] Bryner E, Sharma M G, McDaniel J C, et al. Tunable diode laser absorption technique development for determination of spatially resolved water concentration and temperature[C]//48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010.
[38] Dolvin D J. Hypersonic international flight research and experimentation (HIFiRE) fundamental sciences and technology development strategy[C]//15th AIAA International Space Planes and Hypersonic System and Technologies Conference. Reston: AIAA, 2008.
[39] Lindstrom C D, Jackson K R, Williams S, et al. Shock-train structure resolved with absorption spectroscopy Part I: system design and validation [J]. AIAA Journal, 2009, 47(10): 2368-2378.
[40] Lindstrom C D, Davis D, Williams S, et al. Shock-train structure resolved with absorption spectroscopy Part II: analysis and CFD comparison [J]. AIAA Journal, 2009, 47(10): 2379-2390.
[41] Ma L, Li X, Sanders S T, et al. 50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography[J]. Optics Express, 2013, 21(1): 1152-1162.
[42] Kak A C, Slaney M. Principles of computerized tomographic imaging[M]. New York: IEEE Press, 1999.
[43] Shepp L A, Logan B F. The Fourier reconstruction of a head section[J]. IEEE Transaction on Nuclear Science, 1974, 21(3): 21-43.
[44] Smith L M, Keefer D R, Sudharsanan S I. Abel inversion using transform techniques [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1988, 39(5): 367-373.
[45] Dasch C J. One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods [J]. Applied Optics, 1992, 31(8): 1146-1152.
[46] Villarreal R, Varghese P L. Frequency-resolved absorption tomography with tunable diode lasers[J]. Applied Optics, 2005, 44(31): 6786-6795.
[47] Zhuang T G. The princle and algorithm of CT[M]. Shanghai: Shanghai Jiao Tong University Press, 1992(in Chinese). 庄天戈. CT原理与算法[M]. 上海: 上海交通大学出版社, 1992.
[48] Herman G T. Fundamentals of computerized tomography: image reconstruction from projections[M]. New York: Springer, 2009.
[49] Gordon R, Bender R, Herman G T. Algebraic reconstruction techniques for three-dimensional electron microscopy and X-ray photography[J]. Journal of Theoretical Biology, 1970, 29(3): 471-481.
[50] Llacer J, Meng J D. Matrix-based image reconstruction method for tomography [J]. IEEE Transactions on Nuclear Science, 1995, 32(1): 855-864.
[51] Ma L, Cai W. Numerical investigation of hyperspectral tomography for simultaneous [J]. Applied Optics, 2008, 47(21): 3751-3759.
[52] Qiu W, Pengpan T, Smith N D, et al. Evaluating iterative algebraic algorithms in terms of convergence and image quality for cone beam CT[J]. Computer Methods and Programs in Biomedicine, 2013, 109(3): 313-322.
[53] Verhoeven D. Limited-data computed tomography algorithms for the physical sciences[J]. Applied Optics, 1993, 32(10): 3736-3754.
[54] Ravichandran M, Gouldin F C. Reconstruction of smooth distribution from a limited number of projections[J]. Applied Optics, 1988, 27(19): 4084-4097.
[55] Ravichandran M, Gouldin F C. Retrieval of asymmetric temperature and concentration profiles from a limited number of absorption measurement[J]. Combustion Science and Technology, 1988, 60(1-3): 231-248.
[56] Chung K B, Gouldin F C, Wolga G J. Experimental reconstruction of the spatial density distribution of a nonreacting flow with a small number of absorption measurements [J]. Applied Optics, 1995, 34(24): 5492-5500.
[57] Medoff B P, Brody W R, Nassi M, et al. Iterative convolution back-projection algorithms for image reconstruction from limited data[J]. Journal of the Optical Society of America, 1983, 73(11): 1493-1500.
[58] Andersen A H. Algebraic reconstruction in CT from limited views[J]. IEEE Transactions on Medical Imaging, 1989, 8(1): 50-55.
[59] Constantino E P A, Davidson J L, Ozanyan K B. Comparison of two methods for tomographic imaging form severely incomplete data[C]//5th World Congress on Industrial Process Tomography, 2007.
[60] Drescher A C, Gadgil A J, Price P N, et al. Novel approach for tomographic reconstruction of gas concentration distribution in air: use of smooth basis functions and simulated annealing [J]. Atmospheric Environment, 1996, 30(6): 926-940.
[61] Drescher A C, Park D Y, Yost M G, et al. Stationary and time-dependent indoor tracer-gas concentration profiles measured by OP-FTIR remote sensing and SBFM-computed tomography[J]. Atmospheric Environment, 1997, 31(5): 727-740.
[62] Ma L, Cai W, Caswell A W, et al. Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy[J]. Optics Express, 2009, 17(10): 8602-8613.
[63] Cai W, Ma L. Hyperspectral tomography based on proper orthogonal decomposition as motivated by imaging diagnostics of unsteady reactive flows[J]. Applied Optics, 2010, 49(4): 601-610.
[64] Wickersham A J, Cai W, Ma L. Application of proper orthogonal decomposition to hyperspectral tomographic imaging of unstready flows[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013.
[65] Li N, Weng C S. Gas concentration and temperature reconstruction by genetic simulated annealing algorithm based on multi-wavelengths diode laser absorption spectroscopy[J]. Acta Physica Sinica, 2010, 59(10): 6914-6920 (in Chinese). 李宁, 翁春生. 基于多波长激光吸收光谱技术的气体浓度和温度二维分布遗传模拟退火重建研究[J]. 物理学报, 2010, 59(10): 6914-6920.
[66] Piccolomini E L, Zama F. The conjugate gradient regularization method in computed tomography problems[J]. Applied Mathematics and Computation, 1999, 102(1): 87-99.
[67] Li N, Weng C. Modified adaptive algebraic tomographic reconstruction of gas distribution from incomplete projection by a two-wavelength absorption scheme [J]. Chinese Optics Letters, 2011, 9(6): 061201.
[68] Ma L, Cai W, Caswell A W, et al. Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy[J]. Optics Express, 2009, 17(10): 8602-8613.
[69] Hansen P C, Hansen M S. AIR tools-a MATLAB package of algebraic iterative reconstruction methods[J]. Journal of Computational and Applied Mathematics, 2012, 236(8): 2167-2178.
[70] Lins B, Zinn P, Engelbrecht R, et al. Simulation-based comparison of noise effects in wavelength modulation spectroscopy and direct absorption TDLAS [J]. Applied Physics B, 2010, 100(2): 367-376.
[71] Song J, Hong Y, Wang G, et al. Algebraic tomographic reconstruction of two-dimensional gas temperature based on tunable diode laser absorption spectroscopy[J]. Applied Physics B, 2013, 112(4): 529-537.
[72] Song J L, Hong Y J, Wang G Y, et al. Optimization of irregular beam distribution for two-dimensional temperature reconstruction[J]. Acta Optica Sinica, 2013, 33(4): 0430001 (in Chinese). 宋俊玲, 洪延姬, 王广宇, 等. 温度场二维重建非规则光线分布优化[J]. 光学学报, 2013, 33(4): 0430001.
[73] Guha A, Schoeg I M. Tomographic imaging of flames: assessment of reconstruction error based on simulated results[J]. Journal of Propulsion and Power, 2014, 30(2): 350-359.
/
〈 | 〉 |