固体力学与飞行器总体设计

带褶皱的等张力体航天服软关节设计与实验

  • 刘奇林 ,
  • 刘向阳 ,
  • 李猛
展开
  • 中国航天员科研训练中心人因工程重点实验室, 北京 100094
刘奇林,男,硕士研究生。主要研究方向:航天服工程。Tel:0793-6321767,E-mail:liuqilin01024488@163.com;刘向阳,男,硕士,研究员,硕士生导师。主要研究方向:航天服工程,环境控制与生命保障工程。Tel:010-66362311,E-mail:LxyangLf@sina.com

收稿日期: 2014-12-30

  修回日期: 2015-01-30

  网络出版日期: 2015-03-25

基金资助

国家级项目

Design and experiment of pleated isotensoid spacesuit soft joint

  • LIU Qilin ,
  • LIU Xiangyang ,
  • LI Meng
Expand
  • National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China

Received date: 2014-12-30

  Revised date: 2015-01-30

  Online published: 2015-03-25

Supported by

National Level Project

摘要

面向未来行星表面探测任务,航天服的活动性能需要进一步提高。为此,应改进航天服软关节的结构形式。根据等张力体形状内部承压时不存在周向应力的理论,在该曲面周向上加入褶片结构,设计出了带褶皱的等张力体关节,使之能够沿周向弯曲或伸展。为验证关节性能,利用柔性单自由度关节测量设备,进行了多次加卸载和不同运动范围的力矩特性研究,分析了关节的几何形态、等容性以及主应力状态,并将该关节与无褶皱的等张力体关节和平褶式关节进行了比较,最后讨论了关节的优化方向。结果表明,在测试的0°~80°范围内,关节力矩较小,最大容积变化为1.6%。关节弯曲时,等张力体曲面上周向应力仍可忽略不计。首次加载与之后的加载有一定的差异,而不同的运动范围对关节活动性能无影响。与其他两种关节形式比较,带褶皱等张力体关节在几何尺寸、运动形态和活动性能上都具有一定的优势。此外,该关节可在结构和材料方面进一步优化。

本文引用格式

刘奇林 , 刘向阳 , 李猛 . 带褶皱的等张力体航天服软关节设计与实验[J]. 航空学报, 2015 , 36(12) : 3868 -3875 . DOI: 10.7527/S1000-6893.2015.0040

Abstract

Toward future exploration programs on planetary surface, the flexibility of spacesuit needs to be further enhanced by improving structure forms of spacesuit soft joint. According to the theory that isotensoid shape can carry interior pressure without circumferential stress, pleated isotensoid joint is designed by introducing wrinkles onto isotensoid surface along the circumferential direction. So this joint can be bent and stretched in the direction of circumference. To verify the performance of joint, measuring equipment of flexible unidirectional joints is applied to investigating joint torque characteristics by repeatedly loading and unloading with different ranges of motion. The joint geometry, capacity to remain constant volume and principal stress state are analyzed. Then comparison of this joint, smooth isotensoid joint and flat pattern joint is carried out. Finally the optimization metrics of joint are discussed. Results show that joint torque is relatively low and the maximum volume change is 1.6% in the testing range of 0° to 80°. The circumferential stress on isotensoid surface can be basically negligible when the joint is flexed. There are some differences between the first time loading and subsequent loading. However, different ranges of motion have no influence on joint mobility. It can be concluded that pleated isotensoid joint has certain advantages on geometry, motility patterns and mobility property over the other two types of joint. In addition, this joint can be further optimized in terms of structure and material.

参考文献

[1] Ochoa D, Miranda B, Conger B, et al. Lunar EVA thermal environment challenges, SAE Technical Paper 2006-01-2231[R]. New York:SAE International, 2006.
[2] Klaus D, Bamsey M, Schuller M, et al. Defining space suit operational requirements for Lunar and Mars missions and assessing alternative architectures, SAE Technical Paper 2006-01-2290[R]. New York:SAE International, 2006.
[3] Chappell S P. Analysis of planetary spacesuit systems and evaluation of a modified partial-gravity simulation technique[D]. Boulder:University of Colorado, 2006.
[4] Kosmo J, Ross A. Space suit mobility evaluations in Lunar/Mars gravity environments, SAE Technical Paper 981627[R]. New York:SAE International, 1998.
[5] Capua M D, Akin D, Brannan J. Design and technology development of an advanced all-soft high mobility planetary space suit, AIAA-2010-6176[R]. Reston:AIAA, 2010.
[6] Bethke K, Carr C, Pitts B, et al. Bio-suit development:Viable options for mechanical counter pressure, SAE Technical Paper 2004-01-2294[R]. New York:SAE International, 2004.
[7] Thomas K S, McMann H J. US spacesuits[M]. 2nd ed. Chichester:Praxis Publishing, 2012:35-251.
[8] Skoog A, Abramov I P. The Soviet/Russian spacesuit history Part Ⅲ-The European connection[J]. Acta Astronautica, 2007, 60(12):1002-1014.
[9] Gary L H. The origins and technology of the advanced extravehicular space suit[M]. Springfield, VA:American Astronautical Society, 2001:18-45.
[10] Leon P, Williamson M, Silva S, et al. The development of a planetary suit concept demonstrator by the North Dakota Space Grant Consortium, SAE Technical Paper 2006-01-2233[R]. New York:SAE International, 2006.
[11] NDX-2:Development of an advanced planetary space suit demonstrator system for the Lunar environment, AIAA-2011-5013[R]. Reston:AIAA, 2011.
[12] Sim Z L. Development of a mechanical counter pressure bio-suit system for planetary exploration[D]. Sydney:University of New South Wales, 2003.
[13] Judnick D, Newman D, Hoffman J. Modeling and testing of a mechanical counter pressure bio-suit system, SAE Technical Paper 2007-01-3172[R]. New York:SAE International, 2007.
[14] Ikema K, Gubarevich A V, Odawara O. Deformation analysis of a joint structure designed for space suit with the aid of an origami technology[J]. Japan Society for Aeronautical and Space Sciences (JSASS), 2010, 27(8):1-5.
[15] Ikema K, Gubarevich A V, Odawara O. A pneumatic joint for enhancement of spacesuit flexibility[J]. Journal of Aerospace Engineering, 2012, 27(2):347-353.
[16] Paulsen W H. What is the shape of a Mylar balloon?[J]. The American Mathematical Monthly, 1994, 101(10):953-958.
[17] Pagitz M, Pellegrino S. Buckling pressure of "pumpkin" balloons[J]. International Journal of Solids and Structures, 2007, 44(21):6963-6968.
[18] Taylor G I. On the shapes of parachutes[C]//The Scientific Papers of G.I.Taylor. Cambridge:Cambridge University Press, 1963:26-37.
[19] Zhao J D, Jing M H, Gao Z Q, et al. Passive robot based measuring method for intravehicular and extravehicular mobility unit spacesuit arm[J]. Acta Aeronautica et As-tronautica Sinica, 2008, 29(5):1370-1380(in Chinese).赵京东,金明河,高志强,等.基于随动机器人的舱内外航天服手臂测试方法[J].航空学报, 2008, 29(5):1370-1380.
[20] Li G L, Li D K, Zhou S M, et al. Damping moment analysis of bellows-type space suit joint base on energy method[J]. Engineering Mechanics, 2010, 27(10):235-240(in Chinese).李广利,李道奎,周仕明,等.基于能量法的波纹管式航天服关节阻力矩分析[J].工程力学, 2010, 27(10):235-240.
[21] Holschuh B, Waldie J, Hoffman J, et al. Characterization of structural, volume and pressure components to space suit joint rigidity, SAE Technical Paper 2009-01-2535.35[R]. New York:SAE International, 2009.
[22] Shang K, Liu X Y, Li M. Modeling the flat pattern mobility joint of spacesuit based on the finite element method[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):1002-1010(in Chinese).尚坤,刘向阳,李猛.基于有限元方法的航天服平褶式关节建模研究[J].航空学报, 2015, 36(3):1002-1010.

文章导航

/