伴飞诱饵干扰下的自杀式无人机攻击策略
收稿日期: 2014-09-25
修回日期: 2015-03-01
网络出版日期: 2015-03-16
基金资助
国家自然科学基金(61374032); 航空科学基金(20125853035)
Suicide drones' attack strategy on the condition of escort free-flight decoys influence
Received date: 2014-09-25
Revised date: 2015-03-01
Online published: 2015-03-16
Supported by
National Natural Science Foundation of China (61374032); Aeronautical Science Foundation of China (20125853035)
针对敌方存在伴飞诱饵情况下我方自杀式无人机的攻击策略问题展开研究。首先,根据自杀式无人机的作战特点,提出一种改进的Lanchester方程,即在分析机载传感装置作战性能的基础上,建立起作战双方兵力损耗的微分方程,以得到能够描述自杀式无人机的作战规律。然后,将最优控制方法应用于Lanchester方程中的攻击策略分析,以Lanchester方程为状态方程,以无人机的攻击概率为控制变量,分别得到终端时刻固定和可变两种情况下的最优控制模型,并采用高斯伪谱法对最优控制问题进行求解,以得到最优攻击策略。最后,对敌方杀伤力未知时我方无人机的攻击策略进行分析,同样可以得到相应的最优攻击策略。在给定的初始条件下进行了一系列仿真验证,仿真结果表明了模型的合理性和算法的有效性,所述方法可以为相应的空战决策提供依据。
关键词: 自杀式无人机; 伴飞诱饵; 攻击策略; Lanchester方程; 最优控制
王晓光 , 章卫国 , 刘洋 . 伴飞诱饵干扰下的自杀式无人机攻击策略[J]. 航空学报, 2015 , 36(9) : 3137 -3146 . DOI: 10.7527/S1000-6893.2015.0056
The suicide drones' attack strategy under the influence of enemy's escort free-flight decoys is considered. Firstly, according to the suicide drone's operational characteristic, improved Lanchester equations are proposed. On the basis of airborne sensor's operational performance analysis, differential equations of the both sides' force attritions are established, so that the suicide drone's warfare rule can be described. Secondly, the optimal control method is applied to attack strategy analysis in Lanchester equations. Considering the Lanchester equations as state equations and taking suicide drones' attack probability as the control variable, the optimal control models of fixed and variable at terminal time can be separately established. Both optimal control problems are solved with Gauss pseudospectral method, so that the optimal attack strategies can be obtained. Lastly, the suicide drones' attack strategied are analyzed when enemy's killability is unknown, and the corresponding optimal attack strategies can be obtained. Under the given initial conditions, a series of simulations and verifications are carried out. The simulation results show that the models are feasible and the algorithm is effective, the methods described in the paper can provide references for air combat decision making.
[1] Austin R. Unmanned air systems UAV design, development and deployment[M]. West Sussex: A John Wiley and Sons, Ltd., 2010: 255.
[2] Xue Y, Zhuang Y, Zhang Y Y, et al. Multiple UCAV cooperative jamming air combat decision making based on heuristic self-adaptive discrete differential evolution algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 342-351 (in Chinese). 薛羽, 庄毅, 张友益, 等. 基于启发式自适应离散差分进化算法的多UCAV协同干扰空战决策[J]. 航空学报, 2013, 34(2): 342-351.
[3] Zhang T, Yu L, Zhou Z L, et al. Coordinated attacking strategy for MALD and fighter in medium-range air combat[J]. Journal of Air Force Engineering University: Natural Science Edition, 2013, 14(3): 1-5 (in Chinese). 张涛, 于雷, 周中良, 等. 中距空战下战斗机使用诱饵弹协同攻击策略[J]. 空军工程大学学报: 自然科学版, 2013, 14(3): 1-5.
[4] Guo X H, Song B F. Algorithm of aircraft hit probability in infrared jamming scenario[J]. Electronics Optics & Control, 2005, 12(6): 5-7 (in Chinese). 郭晓辉, 宋笔锋. 红外干扰下飞机击中概率计算[J]. 电光与控制, 2005, 12(6): 5-7.
[5] Kish B, Jacques D, Pachter M. Optimal control of sensor threshold for autonomous wide-area-search munitions[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1239-1248.
[6] Jacques D, Bode J, Pachter M. Optimization of an autonomous weapon system's operating characteristic [J]. IEEE Systems Journal, 2009, 3(4): 489-498.
[7] Rosario R. Optimal sensor threshold control and the weapon operating characteristic for autonomous search and attack munitions[D]. Ohio: Air Force Institute of Technology, 2007.
[8] Washburn A, Kress M. Combat modeling[M]. New York: Springer Science and Business Media, LLC, 2009: 94-95.
[9] Wang S F, Liu Y C, Guan S Y, et al. Study of cooperative operation effectiveness for UAV with escort free-flight decoys[J]. Journal of Astronautics, 2007, 28(2): 498-502 (in Chinese). 王斯福, 刘永才, 关世义, 等. 伴飞诱饵支援条件下无人飞行器协同作战效能研究[J]. 宇航学报, 2007, 28(2): 498-502.
[10] Wang H, Zeng J Y, Luo M S. Study of escort free-flight decoys influence on anti-ship missile penetration to ship-to-air missile[J]. Fire Control & Cornmand Control, 2011, 36(5): 68-71 (in Chinese). 汪浩, 曾家有, 罗木生. 伴飞诱饵支援对反舰导弹突防舰空导弹的影响[J]. 火力与指挥控制, 2011, 36(5): 68-71.
[11] Niu D Z, Chen C X, Ban F, et al. Prediction on air combat process based on effectiveness evaluation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1416-1423 (in Chinese). 牛德智, 陈长兴, 班斐, 等. 基于效能评估的航空作战进程预测[J]. 航空学报, 2014, 35(5): 1416-1423.
[12] Wang Q, Chen Y, Zhang Y X, et al. Optimal control theory, method and applications[M]. Beijing: Higher Education Press, 2011: 6 (in Chinese). 王青, 陈宇, 张颖昕, 等. 最优控制理论、方法与应用[M]. 北京: 高等教育出版社, 2011: 6.
[13] Jiang F H, Baoyin H X, Li J F. Practical techniques for low-thrust trajectory optimization with homotopic approach[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(1): 245-257.
[14] Elnagar J, Kazemi M A, Razzaghi M. The pseudospectral Legendre method for discretizing optimal control problems[J]. IEEE Transactions on Automatic Control, 1995, 40(10): 1793-1796.
[15] Yao Y W, Li H B. The generation of three-dimensional constrained entry trajectories for hypersonic vehicle based on the Gauss pseudospectral method[J]. Aerospace Control, 2012, 30(2): 33-38 (in Chinese). 姚寅伟, 李华滨. 基于Gauss伪谱法的高超声速飞行器多约束三维再入轨迹优化[J]. 航天控制, 2012, 30(2): 33-38.
[16] Benson D. Gauss pseudospectral transcription for optimal control[D]. Cambridge: Massachusetts Institute of Technology, 2005.
[17] Mehrpouya M A, Shamsi M, Azhmyakov V. An efficient solution of hamiltonian boundary value problems by combined gauss pseudospectral method with differential continuation approach[J]. Journal of the Franklin Institute, 2014, 351(10): 4765-4785.
[18] Houacine M, Khardi S. Gauss pseudospectral method for less noise and fuel consumption from aircraft operations[J]. Journal of Aircraft, 2010, 47(6): 2152-2159.
[19] Zhang L, Gao H, Chen Z, et al. Multi-objective global optimal parafoil homing trajectory optimization via Gauss pseudospectral method[J]. Nonlinear Dynamics, 2013, 72(1): 1-8.
[20] Zhang Y, He X. Optimal orbital transfer with finite thrust based on Gauss pseudospectral method[J]. Multidiscipline Modeling in Materials and Structures, 2010, 6(3): 399-409.
/
〈 | 〉 |