材料工程与机械制造

空间绳系机器人捕获目标后的面内自适应回收方法

  • 孟中杰 ,
  • 黄攀峰 ,
  • 王东科
展开
  • 1. 西北工业大学航天学院智能机器人研究中心, 西安 710072;
    2. 航天飞行动力学技术国家级重点实验室, 西安 710072
孟中杰,男,博士,副教授。主要研究方向:利用系绳的空间操控技术,非线性控制Tel:029-88460366-802,E-mail:mengzhongjie@nwpu.edu.cn

收稿日期: 2014-11-18

  修回日期: 2015-03-02

  网络出版日期: 2015-03-12

基金资助

国家自然科学基金(11272256);中央高校基本科研业务费专项资金(3102014JCQ01005)

In-plane adaptive retrieval method for tethered space robots after target capturing

  • MENG Zhongjie ,
  • HUANG Panfeng ,
  • WANG Dongke
Expand
  • 1. Research Center for Intelligent Robotics, School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. National Key Laboratory of Aerospace Flight Dynamics, Xi'an 710072, China

Received date: 2014-11-18

  Revised date: 2015-03-02

  Online published: 2015-03-12

Supported by

National Natural Science Foundation of China (11272256); Fundamental Research Funds for the Central Universities (3102014JCQ01005)

摘要

在空间绳系机器人(TSR)捕获目标星后,操作机构与目标星形成质量、惯量和系绳连接点位置等参数未知的组合体,且系绳长度、偏角与组合体姿态严重耦合,控制输入严格受限,回收控制十分困难。针对其回收难题,综合考虑系绳长度、系绳偏角与组合体姿态,利用拉格朗日法建立了轨道面内的动力学模型,并基于动态逆理论设计了一种自适应抗饱和回收控制方法。首先,在对组合体质量、惯量与系绳连接点进行在线估计的基础上,设计一种自适应动态逆回收控制器;然后,设计辅助变量对控制输入进行补偿,解决控制输入受限问题;最后进行仿真验证。仿真结果表明,在线估计器能够快速有效地估计组合体动力学参数,回收控制系统能够利用受限的控制输入克服抓捕时刻的系绳偏角和组合体姿态扰动,并沿设计的回收轨迹实现稳定有效回收。

本文引用格式

孟中杰 , 黄攀峰 , 王东科 . 空间绳系机器人捕获目标后的面内自适应回收方法[J]. 航空学报, 2015 , 36(12) : 4035 -4042 . DOI: 10.7527/S1000-6893.2015.0059

Abstract

After a target satellite is captured by the tethered space robot (TSR), the operator of TSR and the target satellite compose a combination with uncertain mass, inertia and tether junction position. The tether length, tether deflection and combination attitude are coupled seriously and control inputs are strictly limited, which make the retrieval of TSR very difficult. For the retrieval problem, the in-plane dynamic model is established using the Lagrangian method by considering the tether length, tether deflection and the combination attitude. An adaptive and anti-saturation control method is designed based on dynamic inversion theory. Firstly, an adaptive dynamic inversion retrieval controller is designed based on the online estimation of the combination mass, inertia and the tether junction position. Then, auxiliary variables are designed to compensate the inputs, which solve the problem of the limited control inputs. Finally, numerical simulations are conducted to validate the feasibility of the controller. Simulation results show that the online estimator can estimate the uncertain parameters fast and effectively. The retrieval controller can overcome disturbances of the tether deflection and combination attitude by limited inputs. The combination is retrieved stably and effectively along the designed trajectory.

参考文献

[1] Bischof B, Kerstein L, Starke J, et al. Roger-robotic geostationary orbit restorer[J]. Scientific and Technology Series, 2005, 109:183-193.
[2] Meng Z J, Wang D K, Yang Y Q, et al. Release dynamic and control for tethered space robot using CMAC[C]//6th IEEE Conference on Industrial Electronics and Applications. Piscataway, NJ:IEEE Press, 2011:1297-1301.
[3] Yuga N, Fumiki S, Shinichi N. Guidance and control of "tethered retriever" with collaborative tension-thruster control for future on-orbit service missions[C]//The 8th International Symposium on Artificial Intelligence:Robotics and Automation in Space-ISAIRAS. Munich:ESA, 2005:149-156.
[4] Masahiro N, Nenchev D N, Aasaru U. Tethered robot casting using a spacecraft-mounted manipulator[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(4):827-833.
[5] Mori O, Matunaga S. Coordinated control of tethered satellite cluster systems[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2001:6-9.
[6] Williams P. Deployment/retrieval optimization for flexible tethered satellite systems[J]. Nonlinear Dynamics, 2008, 52(1-2):159-179.
[7] Williams P. Optimal deployment/retrieval of tethered satellites[J]. Journal of Spacecraft and Rockets, 2008, 45(2):324-343.
[8] Williams P. Quadrature discretization method in tethered satellite control[J]. Applied Mathematics and Computation, 2011, 217(21):8223-8235.
[9] Wen H, Chen H, Jin D P, et al. Deployment and attitude control of a tethered sub-satellite with controllable arm[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2):408-414(in Chinese).文浩,陈辉,金栋平,等.带可控臂绳系卫星释放及姿态控制[J].力学学报, 2012, 44(2):408-414.
[10] Chen H, Wen H, Jin D P, et al. Offset control of a space tethered mechanism using a controllable rigid arm[J]. SCIENTIA SINICA Physica, Mechanica & Astronnomica, 2013, 43(4):363-371(in Chinese).陈辉,文浩,金栋平,等.带刚性臂的空间绳系机构偏置控制[J].中国科学:物理学力学天文学, 2013,43(4):363-371.
[11] Xu X D, Huang P F, Meng Z J. Coordinated control method of space tethered robot for approaching targets[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1222-1231(in Chinese).徐秀栋,黄攀峰,孟中杰.空间绳系机器人逼近目标协调控制方法[J].航空学报, 2013, 34(5):1222-1231.
[12] Hu Z H, Huang P F, Meng Z J, et al. Integrated pose control of tethered space robot in approaching process[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11):2635-2644(in Chinese).胡仄虹,黄攀峰,孟中杰,等.空间绳系机器人逼近过程的位姿一体化控制[J].航空学报, 2013, 34(11):2635-2644.
[13] Wang D K, Huang P F, Meng Z J, et al. Coordinated attitude control of tethered space robot during target approaching phase[J]. Journal of Astronautics, 2014, 35(5):545-553(in Chinese).王东科,黄攀峰,孟中杰,等.空间绳系机器人目标逼近姿态协调控制[J].宇航学报, 2014, 35(5):545-553.
[14] Meng Z J, Huang P F. An effective approach control scheme for the tethered space robot system[J]. International Journal of Advanced Robotic Systems, 2014, doi:10.5772/58847.
[15] Vadali S R, Kim E. Nonlinear feedback deployment and retrieval of tethered satellite systems[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(1):28-34.
[16] Ohtsuka T. Nonlinear optimal feedback control for deployment/retrieval of a tethered satellite[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2001, 43(142):165-173.
[17] Yu B S, Jin D P. Deployment and retrieval of tethered satellite system under J2 perturbation and heating effect[J]. Acta Astronautica, 2010, 67(7):845-853.
[18] Wang D K, Huang P F, Meng Z J, et al. Coordinated attitude control of the combination system after target capture by a tethered space robot[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1998-2006(in Chinese).王东科,黄攀峰,孟中杰,等.空间绳系机器人抓捕后复合体姿态协调控制[J].航空学报, 2013, 34(8):1998-2006.
[19] Huang P F, Wang D K, Meng Z J, et al. Post-capture attitude control for a tethered space robot-target combination system[J]. Robotica, 2015, 33(4):898-919.
[20] Jung W, Mazzoleni A P, Chung J. Dynamic analysis of a tethered satellite system with a moving mass[J]. Nonlinear Dynamics, 2014, 75(1-2):267-281.
[21] Hughes P C. Spacecraft attitude dynamics[M]. New York:John Wiley, 1986:233-239.
[22] Luh J Y S, Walker M W, Paul R P C. Resolved-acceleration control of mechanical manipulators[J]. IEEE Transactions on Automatic Control, 1980, 25(3):468-474.
[23] Wang H L, Xie Y C. Adaptive inverse dynamics control of robots with uncertain kinematics and dynamics[J]. Automatica, 2009, 45(9):2114-2119.

文章导航

/