材料工程与机械制造

基于孔边距约束和Shepard插值的孔位修正方法

  • 王青 ,
  • 郑守国 ,
  • 李江雄 ,
  • 柯映林 ,
  • 陈磊
展开
  • 1. 浙江大学机械工程学院, 杭州 310027;
    2. 上海飞机制造有限公司, 上海 200436
王青,男,博士,副教授。主要研究方向:飞机数字化装配、复杂装配系统集成。Tel:0571-87953927,E-mail:wqing@zju.edu.cn;郑守国,男,硕士研究生。主要研究方向:飞机数字化装配、数据集成,E-mail:zsg223@126.com;李江雄,男,博士,教授。主要研究方向:飞机数字化装配技术,E-mail:ljxiong@zju.edu.cn;柯映林,男,博士,教授。主要研究方向:先进制造工艺及装备技术、飞机数字化装配技术和系统、难加工材料加工,E-mail:ylke@zju.edu.cn;陈磊,男,研究员级高级工程师。主要研究方向:民用飞机制造工艺、装配和装备技术,E-mail:chenlei@comac.cc

收稿日期: 2014-11-14

  修回日期: 2015-02-11

  网络出版日期: 2015-03-04

基金资助

国家自然科学基金(51375442)

A correction method for hole positions based on hole margin constraints and Shepard interpolation

  • WANG Qing ,
  • ZHENG Shouguo ,
  • LI Jiangxiong ,
  • KE Yinglin ,
  • CHEN Lei
Expand
  • 1. College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China;
    2. Shanghai Aircraft Manufacturing Company Ltd., Shanghai 200436, China

Received date: 2014-11-14

  Revised date: 2015-02-11

  Online published: 2015-03-04

Supported by

National Natural Science Foundation of China (51375442)

摘要

在飞机装配中制孔的位置精度直接影响飞机的最终装配质量,自动化制孔以飞机数模为基准,受装配误差影响,在机翼翼盒等封闭结构中,难以确保制孔位置与骨架沟槽关键特征的边距满足工艺要求。提出一种基于孔边距约束和Shepard插值的自动化制孔位置评价及修正方法,通过激光跟踪仪及扫描仪获取实测骨架点云数据并进行去噪和配准,将骨架理论孔位映射到点云模型获得实际制孔位置,提取骨架沟槽关键特征的边界点并构造Ferguson曲线作为边界曲线,基于此计算制孔约束区域中实际孔位的边距及孔边距偏差。针对孔边距可能超差的情况,提出一种先基于孔边距偏差修正约束孔位再利用Shepard插值法修正其余孔位的孔位修正策略,在满足孔边距要求的同时保留了原孔位的行列分布特性。运用所提出的方法对某型飞机机翼骨架进行测量和数据处理,验证了该方法的有效性。

本文引用格式

王青 , 郑守国 , 李江雄 , 柯映林 , 陈磊 . 基于孔边距约束和Shepard插值的孔位修正方法[J]. 航空学报, 2015 , 36(12) : 4025 -4034 . DOI: 10.7527/S1000-6893.2015.0047

Abstract

The position accuracy of holes directly affects the quality of aircraft final assembly. Automatic drilling relies on aircraft CAD model, which is influenced by the assembly errors. In closed structure such as aircraft wing, it is hard to ensure the distance between the hole center and the boundary of trench of skeleton. Then, a correction method for hole positions based on hole margin constraints and Shepard interpolation is proposed. Firstly, laser tracker and T-Scan are used to collect point cloud data of wing skeleton and then the data is processed through de-noising and registration. Then, actual hole positions are calculated by projecting reference holes on skeleton model to point cloud. And local boundary feature points are extracted, which are used to fit a Ferguson curve as the local boundary of key feature. Finally, the deviations of actual and theoretical constraint hole margin are calculated. For the deviation exceeding the preset tolerance, the positions of constraint holes are firstly corrected based on hole margin deviation and the other holes are corrected by Shepard interpolation. To demonstrate the validity of this method, an aircraft wing is measured and the data is processed to correct hole positions, which shows that the hole positions can be corrected and the distribution characteristics of original holes can be reserved.

参考文献

[1] Yuan H X. Manufacturing technology of connecting hole in aircraft structures[J]. Aeronautical Manufacturing Technology, 2007(1):96-99(in Chinese).袁红璇.飞机结构件连接孔制造技术[J].航空制造技术, 2007(1):96-99.
[2] Lin C T, Wang M J. Human-robot interaction in an aircraft wing drilling system[J]. International Journal of Industrial Ergonomics, 1999, 23(97):83-94.
[3] Xu G K. Automatic assembly technology for large aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):734-740(in Chinese).许国康.大型飞机自动化装配技术[J].航空学报, 2008, 29(3):734-740.
[4] Calawa R, Smith S, Moore I, et al. HAWDE five axis wing surface drilling machine, SAE 2004-01-2806[R]. 2004.
[5] Sunnanbo A. Laser feedback control for robotics in aircraft assembly[D]. Östergotland:Linkopings University, 2003.
[6] Qu W W, Dong H Y, Ke Y L. Pose accuracy compensation technology in robot aided aircraft assembly drilling process[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1951-1960(in Chinese).曲巍崴,董辉跃,柯映林.机器人辅助飞机装配制孔中位姿精度补偿技术[J].航空学报, 2011, 32(10):1951-1960.
[7] Dong H Y, Zhou H F, Yin F C. Error analysis and compensation for the absolute positioning inaccuracy of robot in automatic drilling[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2475-2484(in Chinese).董辉跃,周华飞,尹富成.机器人自动制孔中绝对定位误差的分析与补偿[J].航空学报, 2015, 36(7):2475-2484.
[8] Dai J L. A research on preprocessing algorithms of mass point cloud[D]. Hangzhou:Zhejiang University, 2006(in Chinese).戴静兰.海量点云预处理算法研究[D].杭州:浙江大学, 2006.
[9] Sun Z L. Research on filtering method of three-dimensional laser scanning point cloud data[D]. Changsha:Central South University, 2011(in Chinese).孙正林.三维激光扫描点云数据滤波方法研究[D].长沙:中南大学, 2011.
[10] Luo X B, Zhong Y X, Li R J. Data registration in 3-D scanning systems[J]. Journal of Tsinghua University:Science and Technology, 2004, 44(8):1104-1106(in Chinese).罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报:自然科学版, 2004, 44(8):1104-1106.
[11] Chen Y R, Wang Y B, Peng Z J, et al. Improved algorithm for extraction of boundary characteristic point from scattered point cloud[J]. Computer Engineering and Applications, 2012, 48(23):177-180(in Chinese).陈义仁,王一宾,彭张节,等.一种改进的散乱点云边界特征点提取算法[J].计算机工程与应用, 2012, 48(23):177-180.
[12] Qian J F. Point cloud processing in reverse engineering[D]. Hangzhou:Zhejiang University, 2005(in Chinese).钱锦锋.逆向工程中的点云处理[D].杭州:浙江大学, 2005.
[13] Sun D Z, Fan Z X, Li Y R. Automatic extraction of boundary characteristic from scatter data[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2008, 36(8):82-85(in Chinese).孙殿柱,范志先,李延瑞.散乱数据点云边界特征自动提取算法[J].华中科技大学学报:自然科学版, 2008, 36(8):82-85.
[14] Zhu X X. Free curves and surfaces modeling technology[M]. Beijing:Science Press, 2000:44-49(in Chinese).朱心雄.自由曲线曲面造型技术[M].北京:科学出版社, 2000:44-49.
[15] Zhan J D, Li X W, Shi T L. Calculating minimum distance between point and planar NURBS curve[J]. Computer Engineering and Applications, 2011, 47(34):26-28(in Chinese).展俊德,李锡文,史铁林.计算点到平面NURBS曲线的最小距离[J].计算机工程与应用, 2011, 47(34):26-28.
[16] Ke Y L, Chen X. Efficient curvature estimation based on 4D Shepard surface[J]. Journal of Zhejiang University:Engineering Science, 2005, 39(6):761-764(in Chinese).柯映林,陈曦.基于4D Shepard曲面的点云曲率估算[J].浙江大学学报:工学版, 2005, 39(6):761-764.
[17] Gordon W, Wixson J. Shepard's method of "metric interpolation" to bivariate and multivariate interpolation[J]. Mathematics of Computation, 1978, 32(141):253-264.
[18] Yang J, Lin Y L, Wang Y P, et al. Fast algorithm for finding the k-nearest neighbors of a large-scale scattered point cloud[J]. Journal of Image and Graphics, 2013, 18(4):399-406(in Chinese).杨军,林岩龙,王阳萍,等.大规模散乱点的k领域快速搜索算法[J].计算机图形图像学报, 2013,18(4):399-406.
[19] Piegl L A, Tiller W. Algorithm for finding all k-nearest neighbors[J]. Computer-Aided Design, 2002, 34(2):167-172.
[20] Guan Y L, Cheng X J, Shi G G. A robust method for fitting a plane to point clouds[J]. Journal of Tongji University:Natural Science, 2008, 36(7):981-984(in Chinese).管云兰,程效军,施贵刚.一种稳健的点云数据平面拟合方法[J].同济大学学报:自然科学版, 2008, 36(7):981-984.

文章导航

/