固体力学与飞行器总体设计

基于浸入式边界法的叶栅颤振数值模拟

  • 胡国暾 ,
  • 杜林 ,
  • 孙晓峰
展开
  • 北京航空航天大学 能源与动力工程学院, 北京 100191
胡国暾 女, 博士研究生。主要研究方向: 气动弹性稳定性。 Tel: 010-82316337-81 E-mail: huguotun@126.com

收稿日期: 2014-12-02

  修回日期: 2015-02-26

  网络出版日期: 2015-03-02

基金资助

国家自然科学基金 (51236001)

Numerical simulation of an oscillating cascade based on immersed boundary method

  • HU Guotun ,
  • DU Lin ,
  • SUN Xiaofeng
Expand
  • School of Energy and Power Engineering, Beihang University, Beijing 100191, China

Received date: 2014-12-02

  Revised date: 2015-02-26

  Online published: 2015-03-02

Supported by

National Natural Science Foundation of China (51236001)

摘要

基于浸入式边界法建立了求解振荡叶栅非定常流动的快速计算模型,并在模型中添加湍流模型,使之能够考虑更加接近实际流动的情况。具体的方法是求解目前为止最常用的雷诺时均Navier-Stokes方程并添加低雷诺数湍流模型(Lam-Bremhorst模型,k-ε模型的一种)进行计算,为了验证该方法的正确性,分别对层流边界层和湍流边界层进行了数值模拟,计算结果与布拉修斯解和壁面率吻合得很好,证明了湍流模型的可靠性。在此基础上,对高雷诺数条件下的振荡叶栅进行了数值模拟。结果表明,折合速度是影响叶栅振荡的重要因素,这与层流计算的结论类似。值得注意的是耦合过程没有生成贴体网格,减小了计算时间,可以准确快速地模拟真实的叶栅流动情况。

本文引用格式

胡国暾 , 杜林 , 孙晓峰 . 基于浸入式边界法的叶栅颤振数值模拟[J]. 航空学报, 2015 , 36(7) : 2269 -2278 . DOI: 10.7527/S1000-6893.2015.0052

Abstract

A fast explicit numerical method is established to solve the unsteady flow with an oscillating cascade on the basis of the immersed boundary method. In order to consider more practical problems, a turbulence model is introduced into this method. The specific method is to solve the Reynolds averaged Navier-Stokes equations with low Reynolds number turbulence model, i.e., Lam-Bremhorst model, which is one of the k-ε models. In order to validate the method, two simulation cases, laminar boundary layer and turbulent boundary layer are carried out and results agree well with the Blasius solution and the law of wall. Based on these benchmark cases, a numerical simulation at high Reynolds number for an oscillating cascade is then established. It is found that the oscillating of cascade is greatly influenced by the reduced velocity which is just the same solution of the laminar results. It is worth noting that the coupling process is not necessary to generating any body-fitting grid, which makes it much faster in computational process for such a cascade problem.

参考文献

[1] Ballhaus W F, Goorjina P M. Computation of unsteady transonic flows by the indicial method[J]. AIAA Journal, 1978, 16(2): 117-124.
[2] He L. An Euler solution for unsteady flows around oscillating blades[J]. Journal of Turbomachinery, 1990, 112(4): 714-722.
[3] He L, Denton J D. Three dimensional time-marching inviscid and viscous solutions for unsteady flows around vibrating blade, ASME Paper, 1993-GT-92[R]. New York: ASME, 1993.
[4] Sadeghi M, Liu F. Computation of mistuning effects on cascade flutter[J]. AIAA Journal, 2001, 39(1): 22-28.
[5] Sadeghi M, Liu F. Computation of cascade flutter by uncoupled and coupled methods[J]. International Journal of Computational Fluid Dynamics, 2005, 19(8): 559-569.
[6] Sadeghi M, Yang S, Liu F, et al. Parallel computation of wing flutter with a coupled Navier-Stokes/CSD method, AIAA-2003-1347[R]. Reston: AIAA, 2003.
[7] Sadeghi M, Liu F. Investigation of mistuning effects on cascade flutter using a coupled method[J]. Journal of Propulsion and Power, 2007, 23(2): 266-272.
[8] Kazawa J, Watanabe T. Numerical analysis toward active control of cascade flutter with smart structure, AIAA-2002-4079[R]. Reston: AIAA, 2002.
[9] Piperno S. Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations[J]. International Journal for Numerical Methods in Fluids, 1997, 25(10): 1207-1226.
[10] Gottfried D A. Simulation of fluid-structure interaction in turbomachinery[D]. West Lafayette: Purdue University, 2000.
[11] Xie H. 3-D nonlinear dynamic fluid-structure coupling numerical method and its application research[D]. Xi'an: Xi'an Jiaotong University, 2003 (in Chinese). 谢浩. 三维非线性动态流体-结构耦合数值方法及其应用研究[D]. 西安: 西安交通大学, 2003.
[12] Hu P G, Xue L P, Mao S L, et al. Material point method applied to fluid-structure interaction(FSI)/aeroelasticity problems, AIAA-2010-1464[R]. Reston: AIAA, 2010.
[13] Hu P G, Xue L P, Kamakoti R, et al. Material point method with least squares technique for nonlinear aeroelasticity and fluid-structure interactions (FSI) in ASTE-P Toolset, AIAA-2010-8224[R]. Reston: AIAA, 2010.
[14] Peskin C S. Flow patterns around heart values: a numerical method[J]. Journal of Computational Physics, 1972, 10(2): 252-271.
[15] Zhong G H, Sun X F. A simulation strategy for an oscillating cascade in the turbomachinery using immersed boundary method[J]. Journal of Propulsion and Power, 2009, 25(2): 312-321.
[16] Hu G T, Sun X F. A numerical modeling of the vortex-induced vibration of cascade in turbomachinery using immersed boundary method[J]. Journal of Thermal Science, 2011, 20(3): 229-237.
[17] Hu G T, Du L, Sun X F. An immersed boundary method for simulating oscillating rotor baldes[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8): 2112-2125 (in Chinese). 胡国暾, 杜林, 孙晓峰. 基于浸入式边界法的振荡转子叶片数值模拟[J]. 航空学报, 2014, 35(8): 2112-2125.
[18] Goldstein D, Handler R, Sirovich L. Modeling a no-slip flow with an external force field[J]. Journal of Computational Physics, 1993, 105(2): 354-366.
[19] Lam C K, Bremborst K A. Modified form of the k-εmodel for predicting wall turbulence[J]. Journal of Fluids Engineering, 1981, 103(3): 456-460.
[20] Wilcox D C. Comparison of two-equation turbulence models for boundary layers with pressure gradient[J]. AIAA Journal, 1993, 31(8): 1414-1421.
[21] Chen M Z. Fundamentals of viscous fluid dynamics[M]. Beijing: Higher Education Press, 2002 (in Chinese). 陈懋章. 粘性流体动力学基础[M]. 北京: 高等教育出版社, 2002.

文章导航

/