高超武器与常规导弹协同攻击策略可行域研究
收稿日期: 2014-08-26
修回日期: 2015-02-20
网络出版日期: 2015-03-01
基金资助
国家自然科学基金 (91116002, 91216304, 61333011, 61121003)
Feasible region of hypersonic and ballistic missiles' cooperative attack strategy
Received date: 2014-08-26
Revised date: 2015-02-20
Online published: 2015-03-01
Supported by
National Natural Science Foundation of China (91116002, 91216304, 61333011, 61121003)
对于高超声速武器与常规导弹协同攻击问题,提出一种同时满足法向过载约束、遭遇时间约束与终端角度约束的协同攻击策略。为提高突防能力,实现战术隐身效果,具有常规气动外型的导弹从目标正面进攻;高超声速导弹利用自身高速和大范围持续高机动能力,绕到雷达视场盲区,从目标两侧进攻;两类导弹的同时命中将对目标形成多对一的打击态势。考虑到实际工程中两类导弹机动能力的限制,推导出了保证协同攻击策略可行的充分条件,得到了协同攻击策略可行域的解析解,并分析了可用过载、飞行速度与攻击阵位对可行域的影响。仿真结果表明,协同攻击策略可以满足给定的多个约束条件,具有良好的可行性。
赵启伦 , 陈建 , 李清东 , 任章 , 李亮 . 高超武器与常规导弹协同攻击策略可行域研究[J]. 航空学报, 2015 , 36(7) : 2291 -2300 . DOI: 10.7527/S1000-6893.2015.0048
For solving the cooperative attack problem of hypersonic and ballistic missiles, a cooperative attack strategy with multiple constraints of the overload, impact time and impact angle is investigated. To enhance penetration capability and achieve the effect of tactical stealth, missiles with conventional aerodynamic shape attack the target in the front. In the mean time, hypersonic missiles, taking use of its super high speed and the continuous high mobility in a large scale, go to the dead zone of radar's view field and attack the target from two other sides. Hitting the target at the same time, the two kinds of missiles form a several-for-one attacking situation. Taking into account the maneuver ability limit of two kinds of missiles, a sufficient condition of guaranteeing the cooperative attack strategy feasible is investigated, the analytic solutions of the feasible regions of cooperative attack are obtained, and the feasible regions are analyzed under different overload constraints, velocites and attacking situations. Numerical simulations demonstrate that the cooperative attack strategy could satisfy the given multiple constraints and has a well feasibility.
[1] Wang F, Tu Z B, Wei J N. Research on key technical problems of cooperative penetration for tactical missile[J]. Tactical Missile Technology, 2013(3): 13-17 (in Chinese). 王芳, 涂震飚, 魏佳宁. 战术导弹协同突防关键技术研究[J]. 战术导弹技术, 2013(3): 13-17.
[2] Liang Z X, Ren Z. Predictive reentry guidance with aerodynamic parameter online correction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(7): 853-857 (in Chinese). 梁子璇, 任章. 基于在线气动参数修正的预测制导方法[J]. 北京航空航天大学学报, 2013, 39(7): 853-857.
[3] Xu B, Wang D, Sun F, et al. Direct neural discrete control of hypersonic flight vehicle[J]. Nonlinear Dynamics, 2012, 70(1): 269-278.
[4] Xu B, Gao D X, Wang S X. Adaptive neural control based on HGO for hypersonic flight vehicles[J]. Science China Information Sciences, 2011, 54(3): 511-520.
[5] Xu B, Sun F, Liu H, et al. Adaptive Kriging controller design for hypersonic flight vehicle via back-stepping[J]. IET Control Theory & Applications, 2012, 6(4): 487-497.
[6] Jeon I S, Lee J I, Tahk M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology, 2006, 14(2): 260-266.
[7] Cui N G, Wei C Z, Guo J F. Flight time margin of missile cooperative engagement[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7): 1351-1359 (in Chinese). 崔乃刚, 韦常柱, 郭继峰. 导弹协同作战飞行时间裕度[J]. 航空学报, 2010, 31(7): 1351-1359.
[8] Lee J I, Jeon I S, Tahk M J. Guidance law to control impact time and angle[J]. IEEE Transactions on Control Systems Technology, 2007, 43(1): 301-310.
[9] Zhao S Y, Zhou R, Wei C. Design and feasibility analysis of a closed-form guidance law with both impact angle and time constraints[J]. Journal of Astronautics, 2009, 30(3): 1064-1085.
[10] Harl N, Balakrishnan S N. Impact time and angle guidance with sliding mode control[J]. IEEE Transactions on Control Systems Technology, 2012, 20(6): 1436-1449.
[11] Jeon I S, Lee J I, Tahk M J. Homing guidance law for cooperative attack of multiple missiles[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 275-280.
[12] Zhao S Y, Zhou R. Design of time-constrained guidance laws via virtual leader approach[J]. Chinese Journal of Aeronautics, 2010, 23(1): 533-539.
[13] Zhao S Y, Zhou R. Multi-missile cooperative guidance using coordination variables[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1605-1611 (in Chinese). 赵世钰, 周锐. 基于协调变量的多导弹协同制导[J]. 航空学报, 2008, 29(6): 1605-1611.
[14] Peng C, Liu X, Wu S T, et al. Consensus problems in distributed cooperative terminal guidance time of multi-missiles[J]. Control and Decision, 2010, 25(10): 1557-1561 (in Chinese). 彭琛, 刘星, 吴森堂, 等. 多导弹分布式协同末制导时间一致性研究[J]. 控制与决策, 2010, 25(10): 1557-1561.
[15] Wang Q, Hou D L, Li J, et al. Consensus analysis of multi-missile decentralized cooperative guidance time with time-delays and topologies uncertainty[J]. Acta Armamentarii, 2014, 35(7): 982-989 (in Chinese). 王青, 后德龙, 李君, 等. 存在时延和拓扑不确定的多弹分散化协同制导时间一致性分析[J]. 兵工学报, 2014, 35(7): 982-989.
[16] Zhang Y A, Ma G X, Wang X P. Time-cooperative guidance for multi-missiles: A leader-follower strategy[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 1109-1118 (in Chinese). 张友安, 马国欣, 王兴平. 多导弹时间协同制导: 一种领弹-被领弹策略[J]. 航空学报, 2009, 30(6): 1109-1118.
[17] Zou L, Ding Q X, Zhou R. Distribute cooperative guidance for multiple heterogeneous networked missiles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(12): 1432-1435 (in Chinese). 邹丽, 丁全心, 周锐. 异构多导弹网络化分布式协同制导方法[J]. 北京航空航天大学学报, 2010, 36(12): 1432-1435.
[18] Zou L, Zhou R, Zhao S Y, et al. Decentralized cooperative guidance for multiple missile groups in salvo attack[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2): 281-290 (in Chinese). 邹丽, 周锐, 赵世钰, 等. 多导弹编队齐射攻击分散化协同制导方法[J]. 航空学报, 2011, 32(2): 281-290.
[19] Zou L, Kong F E, Zhou R, et al. Distributed adaptive cooperative guidance for multi-missile salvo attack[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(1): 128-132 (in Chinese). 邹丽, 孔繁峨, 周锐, 等. 多导弹分布式自适应协同制导方法[J]. 北京航空航天大学学报, 2012, 38(1): 128-132.
[20] Sun X J, Zhou R, Hou D L, et al. Consensus of leader-followers system of multi-missile with time-delays and switching topologies[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(3): 1202-1208.
[21] Sun X J, Zhou R, Wu J, et al. Distributed cooperative guidance law for multiple missiles attacking maneuver target[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(10): 1403-1407 (in Chinese). 孙雪娇, 周锐, 吴江, 等. 攻击机动目标的多导弹分布式协同制导律[J]. 北京航空航天大学学报, 2013, 39(10): 1403-1407.
[22] Sun X J, Zhou R, Wu J, et al. Distributed cooperative guidance and control for multiple missiles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(1): 120-124 (in Chinese). 孙雪娇, 周锐, 吴江, 等. 多导弹分布式协同制导与控制方法[J]. 北京航空航天大学学报, 2014, 40(1): 120-124.
[23] Zhou R, Sun X J, Wu J, et al. Multi-missile distributed cooperative guidance integrating backstepping sliding mode control[J]. Control and Decision, 2014, 29(9): 1617-1622 (in Chinese). 周锐, 孙雪娇, 吴江, 等. 多导弹分布式协同制导与反步滑模控制方法[J]. 控制与决策, 2014, 29(9): 1617-1622.
[24] Hou D L, Chen B, Wang Q, et al. Collision avoidance multi-missiles distributed cooperative guidance and control[J]. Control Theory and Applications, 2014, 31(9): 1133-1142 (in Chinese). 后德龙, 陈彬, 王青, 等. 碰撞自规避多弹分布式协同制导与控制[J]. 控制理论与应用, 2014, 31(9): 1133-1142.
/
〈 | 〉 |