综述

航空发动机压气机叶片砂尘冲蚀防护涂层关键问题综述

  • 何光宇 ,
  • 李应红 ,
  • 柴艳 ,
  • 张翼飞 ,
  • 王冠
展开
  • 空军工程大学 等离子体动力学重点实验室, 西安 710038
何光宇 男, 博士, 讲师。主要研究方向: 先进表面强化理论与技术。 Tel: 029-84787527-609 E-mail: hegy_22@126.com;李应红 男, 硕士, 教授, 博士生导师。主要研究方向: 航空推进技术。 E-mail: yinghong_li@126.com

收稿日期: 2014-10-16

  修回日期: 2015-01-08

  网络出版日期: 2015-02-11

基金资助

国家自然科学基金 (5145506); 陕西省科学技术发展计划 (2014K0826)

Review of key issues on coating against sand erosion of aero-engine compressor blade

  • HE Guangyu ,
  • LI Yinghong ,
  • CHAI Yan ,
  • ZHANG Yifei ,
  • WANG Guan
Expand
  • Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi'an 710038, China

Received date: 2014-10-16

  Revised date: 2015-01-08

  Online published: 2015-02-11

Supported by

National Natural Science Foundation of China (5145506); Shaanxi Science and Technology Development Plan (2014K0826)

摘要

军用直升机和运输机沙漠作战时,砂尘被高速吸入发动机导致压气机叶片外形和结构完整性遭到破坏,严重影响作战性能和耐久性。涂层是提高压气机叶片抗砂尘冲蚀能力的有效措施,但涂层的防护能力与涂层的服役环境、材料体系、结构成份、制备技术以及考核体系等密切相关。结合美军在西亚沙漠作战直升机压气机受损严重的问题,从涂层设计指导性、制备技术可实现性以及试验考核体系的完备有效性三方面综述和对比国内外抗冲蚀涂层研究发展情况,重点分析涂层环境适应性、材料和结构强韧性、制备方法以及考核体系中的影响涂层防护能力的关键问题,深入剖析我国存在的主要差距和原因。分析表明:机理研究不深入、涂层结构与性能设计研究亟待加强、考核手段不完备、研究系统性不强是制约我国抗冲蚀涂层向应用转化的关键,本文对梳理抗冲蚀涂层领域的发展方向具有十分重要的指导意义。

本文引用格式

何光宇 , 李应红 , 柴艳 , 张翼飞 , 王冠 . 航空发动机压气机叶片砂尘冲蚀防护涂层关键问题综述[J]. 航空学报, 2015 , 36(6) : 1733 -1743 . DOI: 10.7527/S1000-6893.2015.0033

Abstract

Military helicopters and transporters have to take off and land under harsh conditions like deserts or battle fields and engines' sucking in solid grains in these complicated environments leads to engine erosion, which in turn severely influences the reliability of the engine and causes reduced performances of the aircraft. Depositing anti-erosion coatings is an effective way to improve the performances of compressor blades against sand erosion. However, under severe erosion environment, coatings are facing great challenges. In order to improve the anti-erosion performances of the coatings, several key issues should be addressed, which include improving coating's adaptability to the environment, designing effective arrangement of components for the coating, devising more effective coating production methods and reliable testing mechanisms. Through analyzing the case of the severe erosion of US helicopter engines in their operations in west Asian desert, this paper reviews the three key issues in coating performance improvement which are the design of coatings, methods of coating production and erosion testing mechanisms. A comparative analysis reveals that the poor erosion mechanism study, lacking of coating design method, incomplete erosion test and unsystematic research are the major problems which result in the fact that the existing erosion coating technology cannot be used on compressors of aircraft in China. This paper is significant for deciding future developments and research focuses of anti-erosion coatings in China.

参考文献

[1] United States Department of Defense. MIL-STD-3033 Particle/sand erosion testing of rotor blade protective materials[S]. Washington, D.C.: United States Department of Defense, 2010.
[2] Henderson R E, Hennecke D K. Erosion corrosion and foreign object damage effects in gas turbines, ADA289820[R]. Rotterdam: ADA, 1998.
[3] Pfledderer L, Pepi M. Sand erosion test method for DOD unique environments[C]//Tri-Service Corrosion Conference. Aberdeen: Army Research Laboratory, 2008: 1-24.
[4] Pepi M, Squillacioti R, Pfledderer L, et al. Solid particle erosion testing of helicopter rotor blade materials[J]. Journal of Failure Analysis and Prevention, 2012, 12(1): 96-108.
[5] Chen K Y, Bielawski M. Ab initio study on fracture toughness of Ti0.75X0.25C ceramics[J]. Journal of Material Science, 2007, 42(23): 9713-9716.
[6] Ashrafrizadeh H, Ashrafrizadeh F. A numerical 3D simulation for prediction of wear caused by solid particle impact[J]. Wear, 2012, 276-277: 75-84.
[7] Lu Y L, Pan J L, Zhang S Q, et al. Influence of highland environmental factors on paint weathering[J]. Equipment Environmental Engineering, 2011, 8(2): 37-41 (in Chinese). 卢言利, 潘家亮, 张拴勤, 等. 高原环境因素对涂层自然老化性能的影响[J]. 装备环境工程, 2011, 8(2): 37-41.
[8] Zhang Y, Li Y, Xi Y S, et al. Development of corrosion preventive coating for marine atmosphere[J]. Equipment Environmental Engineering, 2012, 9(4): 74-78 (in Chinese). 张燕, 李颖, 奚愚生, 等. 海洋大气环境下高耐候性涂层体系的研究[J]. 装备环境工程, 2012, 9(4): 74-78.
[9] Yang X H, He Q, Mamtimin A, et al. A field experiment on dust emission by wind erosion in the Taklimakan desert[J]. Acta Meteorologica Sinica, 2012, 26(2): 241-249.
[10] Wang X M, Zhang C X, Wang H T, et al. The significance of Gobi desert surfaces for dust emissions in China: an experimental study[J]. Environmental Earth Sciences, 2011, 64(4): 1039-1050.
[11] Yang X H, He Q, Mamtimin A, et al. Near-surface sand-dust horizontal flux in Taizhong-the hinterland of the Taklimakan desert[J]. Journal of Arid Land, 2013, 5(2): 199-206.
[12] Liu D X, Xi Y T. Research on solid particle erosion wear resistant of ion assisted deposited ZrN algorithm coating[J]. Journal of Aeronautical Materials, 2010, 30(4): 31-37 (in Chinese). 刘道新, 奚运涛. 离子辅助电弧沉积ZrN梯度涂层抗固体粒子冲蚀行为研究[J]. 航空材料学报, 2010, 30(4): 31-37.
[13] Zhang S, Gong L H. Research on cutting brittle materials by pre-mixed abrasive water jet[J]. Lubrication Engineering, 2011, 36(3): 97-104 (in Chinese). 张沙, 龚烈航. 前混合磨料水射流切割脆性材料研究[J]. 润滑与密封, 2011, 36(3): 97-104.
[14] Alessio G D, Nagy D. Performance of erosion resistant coatings for compressor airfoils[J]. Journal of the Canadian Ceramic Society, 1994, 63(1): 59-63.
[15] Yamazaki Y, Arai M, Miyashita Y, et al. Determination of interfacial fracture toughness of thermal spray coatings by indentation[J]. Journal of Thermal Spray Technology, 2013, 22(8): 1358-1365.
[16] Deng H X, Shi H J, Yu H C, et al. Determination of mixed-mode interfacial fracture toughness for thermal barrier coatings[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(4): 618-624.
[17] Pang X L, Ma H J, Gao K W, et al. Fracture toughness and adhesion of transparent Al:ZnO films deposited on glass substrates[J]. Journal of Materials Engineering and Performance, 2013, 22(10): 3161-3167.
[18] Krella A, Czyzniewski A. Influence of the substrate hardness on the cavitation[J]. Wear, 2007, 263(1-6): 395-401.
[19] Bose K, Wood R J K. High velocity solid particle erosion behavior of CVD boron carbide on tungsten carbide[J]. Wear, 2005, 258(1-4): 366-376.
[20] Yang Q, Seo D Y. Erosion resistance performance of magnetron sputtering deposited TiAlN coatings[J]. Surface and Coatings Technology, 2004, 188-189: 168-173.
[21] Parnaik A, Satapathy A. Solid particle erosion wear characteristics of fiber and particulate filled polymer composites: A review[J]. Wear, 2010, 268(1-2): 249-263.
[22] Hassani S, Klemberg-Sapieha J E. Mechanical tribological and erosion behavior of super-elastic hard Ti-Si-C coatings prepared by PECVD[J]. Surface and Coatings Technology, 2010, 205(5): 1426-1430.
[23] Amirthan G, Udayakumar A. Solid particle erosion studies on biomorphic Si/SiC ceramic composites[J]. Wear, 2010, 268(1-2): 145-152.
[24] Suh M, Hinoki T, Kohyama A. Erosive wear mechanism of new SiC/SiC composites by solid particles[J]. Tribology Letters, 2011, 41(3): 503-513.
[25] Feuerstein A, Kleyman A. Ti-N multilayer systems for compressor airfoil sand erosion protection[J]. Surface and Coatings Technology, 2009, 204(6-7): 1092-1096.
[26] Laguna-Camacho J R, Cruz-Mendoza L A, Anzeimetti-Zaragoza J C, et al. Solid particle erosion on coatings employed to protect die casting molds[J]. Progress in Organic Coatings, 2012, 74(4): 750-757.
[27] Reedy M W, Eden T J, Potter J K, et al. Erosion performance and characterization of nanolayer (Ti,Cr)N hard coatings for gas turbine engine compressor blade applications[J]. Surface and Coatings Technology, 2011, 206(2-3): 464 -472.
[28] Borawski B, Singh J, Todd J A, et al. Multi-layer coating design architecture for optimum particulate erosion resistance[J]. Wear, 2011, 271(11-12): 2782-2792.
[29] Bousser E, Martinu L, Klemberg-Sapieha J E. Effect of erodent properties on the solid particle erosion mechanisms of brittle materials[J]. Journal of Material Science, 2013, 48(16): 5543-5558.
[30] Zhuravleva P L, Treninkov I A. Investigation into the structure of TiN single layer and TiN/ZrN multilayer coatings[J]. Nanotechnologies, 2010, 5(9-10): 669-675.
[31] Trapezon A G, Lyashenko B A. Fatigue strength of metals with hardening coatings[J]. Strength of Materials, 2013, 45(3): 284-294.
[32] Kleis I, Kulu P. Solid particle erosion occurrence, prediction and control[M]. London: Springer, 2007: 55-89.
[33] Bromark M, Larsson M, Hevenqvist P, et al. Wear of PVD Ti/TiN multi-layer coatings[J]. Surface and Coatings Technology, 1997, 90(3): 217-223.
[34] Dobrzanski L A, Lukaszkowicz K. Erosion resistance and tribological properties of coatings deposited by reactive magnetron sputtering method onto the brass substrate[J]. Journal of Materials Processing Technology, 2004, 157-158: 317-323.
[35] Leyland A, Matthews A. Thick Ti/TiN multilayered coatings for abrasive and erosive wear resistance[J]. Surface and Coatings Technology, 1994, 70(1): 19-25.
[36] Borawski B, Todd J A. The influence of ductile interlayer material on the particle erosion resistance of multilayered TiN based coatings[J]. Wear, 2011, 271(11-12): 2890-2898.
[37] Brian B, Jogender S, Judith A T, et al. Multi-layer coating design architecture for optimum particulate erosion resistance[J]. Wear, 2011, 271(11-12): 2782-2792.
[38] Yang Q, Bielawski M, McKellar R C. Microstructures, mechanical properties, and erosion resistance of unbalanced magnetron sputtering deposited TiN/VN nano-structured coatings[J]. Metallography, Mircrostructure and Analysis, 2012, 1(3-4): 150-157.
[39] Bielawski M, Beres W. FE modelling of surface stress in erosion-resistant coatings under single particle impact[J]. Wear, 2007, 267: 167-175.
[40] Ashrafrizadeh H, Ashrafrizadeh F. A numerical 3D simulation for prediction of wear caused by solid particle impact[J]. Wear, 2012, 276-277: 75-84.
[41] Zheng Q L, Tong X P. Application and prospect of vapour deposition technique in product[J]. Aviation Precision Manufacturing Technology, 2013, 49(2): 23-27 (in Chinese). 郑秋麟, 佟向鹏. 气相沉积技术在产品中的应用及发展[J]. 航空精密制造技术, 2013, 49(2): 23-27.
[42] Wang C B, Liu J J, Wei D P, et al. Tribological materials and surface engineering[M]. Beijing: National Defense Industry Press, 2012: 99-123 (in Chinese). 王成彪, 刘家浚, 韦淡平, 等. 摩擦学材料及表面工程[M]. 北京: 国防工业出版社, 2012: 99-123.
[43] Zhao Y H, Dong L M. Recent research progress of plasma nitriding and physical vapor deposition duplex treatment[J]. Materials for Mechanical Engineering, 2012, 36(6): 1-4 (in Chinese). 赵彦辉, 董利民. 等离子体氮化与物理气相沉积复合处理的研究进展[J]. 机械工程材料, 2012, 36(6): 1-4.
[44] Li F, Zhu Y. Review on magnetron sputtering technology and its development[J]. Vacuum Electronics, 2011(3): 49-54 (in Chinese). 李芬, 朱颖. 磁控溅射技术及其发展[J]. 真空电子技术, 2011(3): 49-54.
[45] Yu X, Yue W. Study of fatigue life evaluation method for leading edge of helicopter composite blade[J]. Helicopter Technique, 2009, 159(3): 35-38 (in Chinese). 余洵, 岳巍. 直升机复合材料桨叶前缘包铁疲劳定寿方法研究[J]. 直升机技术, 2009, 159(3): 35-38.
[46] Braun M. Magnetron sputtering technique[M]. London: Springer, 2015: 122.
[47] Blinkov V, Anikin V N, Soboley N A, et al. Development of a hybrid process of obtaining wear-resistant coatings based on ion-plasma arc sputtering and magnetron sputtering[J]. Russian Journal of Non-Ferrous Metals, 2010, 51(4): 370-375.
[48] Schell J D, Hein G, Mendez M, et al. Erosion durability improvement of T64 engine for military helicopters[C]//American Helicopter Society 60th Annual Forum. Virginia: American Helicopter Society, 2004: 7-10.
[49] Ma Z H, Li J G. Sand and dust test technology of military equipment[J]. Equipment Environmental Engineering, 2007, 4(6): 68-72 (in Chinese). 马志宏, 李金国. 军用装备砂尘环境试验技术[J]. 装备环境工程, 2007, 4(6): 68-72.
[50] Wu X M, Shang X Y. Study on erosion resistance of three stainless steels using solid particles[J]. Journal of Aeronautical Materials, 2012, 32(3): 68-72 (in Chinese). 吴小梅, 商晓宇. 三种不锈钢材料抗砂尘冲蚀性能研究[J]. 航空材料学报, 2012, 32(3): 68-72.
[51] Wu X Y, Han Z H. Study of abradable seal coatings deposited by supersonic atmospheric plasma spraying[J]. Heavy Machinery, 2012(5): 45-49 (in Chinese). 吴秀英, 韩志海. 超音速等离子喷涂沉积可磨耗封严涂层研究[J]. 重型机械, 2012(5): 45-49.
[52] Ye C D, Long D, Kong D J, et al. Friction and wear properties of TiN/AlTiN coatings prepared by PVD[J]. Journal of Sichuan University: Engineering Science Edition, 2013, 45(Supp.1): 144-148 (in Chinese). 叶存冬, 龙丹, 孔德军, 等. PVD法制备TiN/AlTiN涂层的摩擦与磨损性能[J]. 四川大学学报: 工程科学版, 2013, 45(增刊1): 144-148.
[53] Kong D J, Fu Y Z, Wu Y Z, et al. Surface and interface properties of TiN films grown by physical vapor deposition[J]. Chinese Journal of Vacuum Science and Technology, 2012, 32(12): 1078-1083 (in Chinese). 孔德军, 付永忠, 吴永忠, 等. PVD法制备TiN涂层界面特征与摩擦磨损性能[J]. 真空科学与技术学报, 2012, 32(12): 1078-1083.
[54] Pu C H, Xu B S, Wang H D, et al. Wear lifetime of 3Cr13 stainless steel coating under various loads[J]. Tribology, 2010, 30(1): 75-79 (in Chinese). 濮春欢, 徐滨士, 王海斗, 等. 不同载荷下3Cr13不锈钢涂层磨损寿命研究[J]. 摩擦学学报, 2010, 30(1): 75-79.
[55] Du J, Zhang P, Zhu X Y, et al. Research on structure and properties of Zr(AlCu)N erosion-resistant coatings on titanium alloy surface[J]. Acta Armamentarii, 2011, 32(12): 1504-1509 (in Chinese). 杜军, 张平, 朱晓莹, 等. 钛合金表面耐冲蚀Zr(AlCu)N涂层的结构与性能[J]. 兵工学报, 2011, 32(12): 1504-1509.
[56] Li H Y, Fang Y H, Xiao K, et al. Progress of failure behavior of coatings in hot and dry atmosphere environment[J]. Science & Technology Review, 2012, 30(34): 76-79 (in Chinese). 李慧艳, 方月华, 肖葵, 等. 干热大气环境中涂层材料失效行为研究进展[J]. 科技导报, 2012, 30(34): 76-79.
[57] Hao Y H, Xing Y M, Yang S T, et al. Erosion mechanism and coating eroded evaluation method of steel structure under sandstorm environment[J]. Tribology, 2010, 30(1): 26-31 (in Chinese). 郝贠洪, 邢永明, 杨诗婷, 等. 风沙环境下钢结构表面涂层冲蚀行为与侵蚀机理研究[J]. 摩擦学学报, 2010, 30(1): 26-31.
[58] Hao Y H, Li Y. Erosion-behaviors of the coating on steel structure eroded at low erosion-angle in sandstorm[J]. Tribology, 2013, 33(4): 345-348 (in Chinese). 郝贠洪, 李永. 风沙环境下钢结构涂层低角度冲蚀特性研究[J]. 摩擦学学报, 2013, 33(4): 345-348.
[59] Hao Y H, Xing Y M, Yang S T, et al. The erosion-wear mechanical properties of the coating of steel structure subject to sandstorm[J]. Chinese Journal of Applied Mechanics, 2013, 30(3): 350-355 (in Chinese). 郝贠洪, 邢永明, 杨诗婷, 等. 风沙环境下钢结构涂层的冲蚀磨损力学性能研究[J]. 应用力学学报, 2013, 30(3): 350-355.
[60] Chai Y, Wang X D, He G Y. Effect of Si-C-N super hard film on the friction and wear properties of TC4 alloy[C]//Abstract book of 2013 CCTAM. Beijing: CSTAM, 2013:140-142 (in Chinese). 柴艳, 王学德, 何光宇. Si-C-N超硬薄膜对TC4合金抗磨擦磨损性能的影响[C]//中国力学大会2013论文摘要集. 北京: 中国力学学会, 2013: 140-142.
[61] He G Y, Li Y H, Wang J, et al. Anti-erosion coating technique based on plasma and its application in helicopter aero-engines[J]. High Voltage Engineering, 2014, 40(7): 2133-2139 (in Chinese). 何光宇, 李应红, 王健, 等. 基于等离子体的抗冲蚀涂层技术及其在直升机发动机领域的应用[J]. 高压电技术, 2014, 40(7): 2133-2139.

文章导航

/