基于CAM/CNC集成的航空大型薄壁件数控加工在机刀轨调整方法
收稿日期: 2014-11-19
修回日期: 2015-01-14
网络出版日期: 2015-02-02
基金资助
国家自然科学基金(51375239);江苏省杰出青年基金(BK20140036)
An adjusting method of tool path on machine for NC manufacture of large thin-walled aeronautical part based on integration of CAM and CNC
Received date: 2014-11-19
Revised date: 2015-01-14
Online published: 2015-02-02
Supported by
National Natural Science Foundation of China (51375239); Jiangsu Province Outstanding Youth Fund (BK20140036)
航空大型薄壁零件刚性弱,加工过程中易产生超差变形,需要对零件进行在机检测,并将检测数据反馈给CAM系统进行拟合并调整刀轨。以上过程需要在不同部门和系统间进行切换,严重影响了生产效率。针对以上问题,提出了一种基于CAM/CNC集成的航空大型薄壁件数控加工在机刀轨调整方法。建立了CAM/CNC集成框架,并构建了用于CAM/CNC间信息传递的动态特征信息模型,基于CAM系统离线生成特征理论中间状态,基于CNC系统建立特征实际中间状态检测点同理论中间状态的映射关系。通过分析理论厚度和实际厚度,确定特征中间状态的变形情况。针对变形导致特征中间状态加工余量无法包络符合公差要求的最终加工状态的情况,进行在机刀轨调整。基于所提出的方法开发的航空大型薄壁件数控加工在机刀轨调整系统在某大型航空企业得到了应用验证,可有效避免信息的反复传递,减少了工艺人员的重复劳动,提高了生产效率。
高鑫 , 李迎光 , 刘长青 , 张臣 . 基于CAM/CNC集成的航空大型薄壁件数控加工在机刀轨调整方法[J]. 航空学报, 2015 , 36(12) : 3980 -3990 . DOI: 10.7527/S1000-6893.2015.0017
Deformation is easy to occur during the machining process for the large thin-walled aeronautical part, which has bad rigidity. In this case, on-machine inspection is needed. The inspection points are obtained and fed back to CAM system to fit surface and generate new tool path. The information needs to be transmitted between different departments and system platform during the above process, which reduces the productivity. In order to address the issues above, an adjusting method of tool path on machine for the manufacture of large thin-walled aeronautical part based on the integration of CAM and CNC is proposed in this paper. The frame of the integration of CAM and CNC is built and the dynamic feature information model is also built in this method to transmit information between CAM and CNC system. The theoretical interim state of part feature is generated based on the CAM system offline. The deformation of the feature interim state is confirmed based on the mapping relationship between theoretical interim state and the actual interim state, and the comparison for the theoretical and actual thickness in the CNC system. The tool path is adjusted on-machine for the situation that the final machining status conforming to the requirement of the tolerance cannot be enveloped by the machining allowance of the feature interim state. The system based on the adjusting method of tool path on machine for the manufacture of large thin-walled aeronautical part based on the integration of CAM and CNC is verified in an aviation manufacturing corporation. Using the proposed method, the transmission of information is reduced, the intensity of labor for technologist is decreased and the productivity is increased.
Key words: CAM; CNC; dynamic feature; thin-walled part; tool path adjustment on machine
[1] Du J, Tian X T, Zhu M Q. Research of integration between CAD/CAPP and CNC system using the STEP-NC data model[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2004, 2004(10):23-27(in Chinese).杜娟,田锡天,朱名铨.基于STEP-NC的CAD/CAPP/CNC系统集成的研究[J].组合机床与自动化加工技术, 2004, 2004(10):23-27.
[2] Sun J, Ke Y L. Study on machining distortion of unitization airframe due to residual stress[J]. Chinese Journal of Mechanical Engineering, 2005, 41(2):117-122(in Chinese).孙杰,柯映林.残余应力对航空整体结构件加工变形的影响分析[J].机械工程学报, 2005, 41(2):117-122.
[3] Lin Y, Luo Y G, Tang L M. Research on machining deformation control methodology for thin-wall arc shaped frame[J]. Machinery Design & Manufacture, 2012(2):107-109(in Chinese).林勇,罗育果,汤立民.航空薄壁弧形框加工变形控制方法研究[J].机械设计与技术, 2012(2):107-109.
[4] Chen W F, Lou P H, Chen H. Active compensation methods of machining deformation of thin-walled parts[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(3):570-576(in Chinese).陈蔚芳,楼佩煌,陈华.薄壁件加工变形主动补偿方法[J].航空学报, 2009, 30(3):570-576.
[5] Yang Y F, Zhang Z, Li L, et al. Numerical simulation and test of bulk residual stress and machining distortion in aluminum alloy 7085[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):574-581(in Chinese).杨吟飞,张峥,李亮,等. 7085铝合金残余应力及加工变形的数值仿真与试验[J].航空学报, 2014, 35(2):574-581.
[6] Yang J H, Zhang D H, Wu B H. A comprehensive error compensation approach considering machining process for complex thin-wall parts machining[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):3174-3181(in Chinese).杨建华,张定华,吴宝海.考虑加工过程的复杂薄壁件加工综合误差补偿方法[J].航空学报, 2014, 35(11):3174-3181.
[7] Yang Y, Li M, Li K R. Comparison and analysis of main effect elements of machining distortion for aluminum alloy and titanium alloy aircraft monolithic component[J]. International Journal of Advanced Manufacturing Technology, 2014, 70(9-12):1803-1811.
[8] Wei Y, Wang X W. Computer simulation and experimental study of machining deflection due to original residual stress of aerospace thin-walled parts[J]. International Journal of Advanced Manufacturing Technology, 2007, 33(3-4):260-265.
[9] Jitender K R, Paul X. Finite element method based machining simulation environment for analyzing part errors induced during milling of thin-walled components[J]. International Journal of Machine Tools & Manufacture, 2008(48):629-643.
[10] Wang Z J, Chen W Y, Zhang Y D, et al. Study on the machining distortion of thin-walled part caused by redistribution of residual stress[J]. Chinese Journal of Aeronautics, 2005, 18(2):175-179.
[11] Du J, Tian X T, Zhu M Q, et al. Integration technology of CAD/CAPP/CAM/CNC systems based on STEP & STEP-NC[J]. Computer Integrated Manufacturing Systems, 2005, 11(4):487-491(in Chinese).杜娟,田锡天,朱名铨,等.基于STEP和STEP-NC的CAD/CAPP/CAM/CNC系统集成技术研究[J].计算机集成制造系统, 2005, 11(4):487-491.
[12] Sivakumar S, Dhanalakshmi V. An approach towards the integration of CAD/CAM/CAI through STEP file using feature extraction for cylindrical parts[J]. International Journal of Computer Integrated Manufacturing, 2013, 26(6):561-570.
[13] Xu X W. Realization of STEP-NC enabled machining[J]. Robotics and Computer-Integrated Manufacturing, 2006, 22(2):144-153.
[14] Wang L, Holm M, Adamson G. Embedding a process plan in function blocks for adaptive machining[J]. CIRP Annals-Manufacturing Technology, 2010, 59(1):433-436.
[15] Brennan R, Zhang X, Xu Y, et al. Reconfigurable concurrent function block model and its implementation in real-time Java[J]. Integrated Computer-Aided Engineering, 2002, 9(3):263-279.
[16] Minhat M, Vyatkin V, Xu X, et al. A novel open CNC architecture based on STEP-NC data model and IEC 61499 function blocks[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(3):560-569.
[17] He X C, Shen M, Zhang T C. Representation scheme of product models for concurrent CAD/CAM integration[J]. Acta Aeronautica et Astronautics Sinica, 2000, 21(1):43-47(in Chinese).何小朝,沈梅,张铁昌.并行CAD/CAM集成中的产品模型表示方法研究[J].航空学报, 2000, 21(1):43-47.
[18] Campos G J, Hardwick M. A traceability information model for CNC manufacturing[J]. Computer-Aided Design, 2006, 38(5):540-551.
[19] Li Y G, Liu X, Gao J X, et al. A dynamic feature information model for integrated manufacturing planning and optimization[J]. CIRP Annals-Manufacturing Technology, 2012, 61(1):167-170.
[20] Li Y G, Liu C Q, Hao X Z, et al. The measurement method and devices of the thickness for NC machining workpiece:China, CN201210397247.2[P]. 2012-10-18(in Chinese).李迎光,刘长青,郝小忠,等.数控加工工件厚度测量方法及装置:中国, CN201210397247.2[P]. 2012-10-18.
/
〈 |
|
〉 |