流体力学与飞行力学

基于谐振舵面的跨声速抖振抑制探究

  • 高传强 ,
  • 张伟伟 ,
  • 叶正寅
展开
  • 西北工业大学 航空学院, 西安 710072
高传强 男, 博士研究生。主要研究方向: 流固耦合力学, 跨声速气动弹性力学。 Tel: 029-88491342 E-mail: gao_800866@163.com;张伟伟 男, 博士, 教授, 博士生导师。主要研究方向: 计算流体力学, 流固耦合力学与控制。 Tel: 029-88491342 E-mail: aeorelastic@nwpu.edu.cn;叶正寅 男, 博士, 教授, 博士生导师。主要研究方向: 计算流体力学, 非定常空气动力学, 新概念飞行器设计。 Tel: 029-88491342 E-mail: yezy@nwpu.edu.cn

收稿日期: 2014-09-22

  修回日期: 2015-01-28

  网络出版日期: 2015-01-29

基金资助

国家自然科学基金 (11172237); 新世纪优秀人才支持计划 (NCET-13-0478)

Study on transonic buffet suppression with flapping rudder

  • GAO Chuanqiang ,
  • ZHANG Weiwei ,
  • YE Zhengyin
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2014-09-22

  Revised date: 2015-01-28

  Online published: 2015-01-29

Supported by

National Natural Science Foundation of China (11172237); Program for New Century Excellent Talents in University (NCET-13-0478)

摘要

跨声速抖振引起的非定常脉动载荷会造成飞行器结构疲劳甚至引发飞行事故,所以跨声速抖振的控制研究逐渐成为航空领域的热点。采用基于Spalart-Allmaras(S-A)湍流模型的非定常雷诺平均方程开展了基于谐振舵面的跨声速抖振抑制研究。首先验证静止NACA0012翼型的抖振边界和频率特性,然后分别从舵偏平衡位置、舵偏幅值、频率以及相角等角度研究了谐振舵面的控制效果。舵偏平衡位置等效于减小了翼型的有效迎角;幅值和频率对抖振抑制效果影响较大,当舵面振荡频率与抖振频率接近时发生共振现象;相角对控制效果有一定影响,在270°相角附近,升力系数幅值减小了60%。在合适的舵偏幅值、频率以及相角组合下,谐振舵面有可能成为跨声速抖振的有效开环控制策略。

本文引用格式

高传强 , 张伟伟 , 叶正寅 . 基于谐振舵面的跨声速抖振抑制探究[J]. 航空学报, 2015 , 36(10) : 3208 -3217 . DOI: 10.7527/S1000-6893.2015.0034

Abstract

Structural fatigue and flight accidents may be caused by the oscillating loads induced by buffet in transonic flight, so transonic buffet control is becoming a hot topic in the field of aviation. An investigation based on unsteady Reynolds-averaged Navier-Stokes equations and Spalart-Allmaras(S-A) turbulence model is presented to study the suppression of resonant rudder on the transonic buffet loads in this paper. First, the buffet onset and frequency characteristics for a stationary NACA0012 airfoil are verified with the experimental data. And then, the validation of the resonant rudder are studied from the variables of initial rudder angle, amplitude, frequency and phase angle. The initial rudder angle can reduce the actual angle of attack of the airfoil by the down effect. The amplitude and frequency are main parameters. In the case of rudder with a frequency very close to the buffet frequency, resonance occurs and the amplitudes of the lift and moment coefficients increase rapidly. The phase angle is also an important factor. Lift coefficient has an decrease of about 60% at phase angle towards 270°. Therefore, resonant rudder may be a feasible open-loop strategy to suppress buffet loads with an appropriate and accessible combination of amplitude, frequency and phase angle.

参考文献

[1] Humphreys M D. Pressure pulsations on rigid airfoils at transonic speeds, NACA RM L51I12[R]. Washington, D.C.: NASA, 1951.
[2] Lee B H K. Self-sustained shock oscillations on airfoils at transonic speeds[J]. Progress in Aerospace Sciences, 2001, 37(2): 147-196.
[3] Doerffer P, Hirsch C, Dussauge J P, et al. NACA0012 with Aileron (Marianna Braza)[M]//Unsteady Effects of Shock Wave Induced Separation. Berlin: Springer, 2011: 101-131.
[4] Jacquin L, Molton P, Deck S, et al. Experimental study of shock oscillation over a transonic supercritical profile[J]. AIAA Journal, 2009, 47(9): 1985-1994.
[5] Dong L. Numerical studies of aircraft buffet with Navier-Stokes equations[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 (in Chinese). 董璐. 飞机抖振特性NS方程计算[D]. 南京: 南京航空航天大学, 2007.
[6] Yang Z C, Dang H X. Buffet onset prediction and flow field around a buffeting airfoil at transonic speeds, AIAA-2010-3051[R]. Reston: AIAA, 2010.
[7] Goncalves E, Houdeville R. Turbulence model and numerical scheme assessment for buffet computations[J]. International Journal for Numerical Methods in Fluids, 2004, 46(11): 1127-1152.
[8] Barakos G, Drikakis D. Numerical simulation of transonic buffet flows using various turbulence closures[J]. International Journal of Heat and Fluid Flow, 2000, 21(5): 620-626.
[9] Chung I, Lee D, Reu T. Prediction of transonic buffet onset for an airfoil with shock induced separation bubble using steady Navier-Stokes solver, AIAA-2002-2934[R]. Reston: AIAA, 2002.
[10] Xiao Q, Tsai H M, Liu F. Numerical study of transonic buffet on a supercritical airfoil[J]. AIAA Journal, 2006, 44(3): 620-628.
[11] Xiong J T, Liu Y, Liu F, et al. Multiple solutions and buffet of transonic flow over NACA0012 airfoil, AIAA-2013-3026[R]. Reston: AIAA, 2013.
[12] Rokoni A A, Hasan A T. Prediction of transonic buffet onset for flow over a supercritical airfoil—A numerical investigation[J]. Journal of Mechanical Engineering, 2013, 43(1): 48-53.
[13] Raghunathan S, Mabey D G. Passive shock-wave/boundary-layer control on a wall-mounted model[J]. AIAA Journal, 1987, 25(2): 275-278.
[14] Ogawa H, Babinsky H, Pätzold M, et al. Shock-wave/boundary-layer interaction control using three-dimensional bumps for transonic wings[J]. AIAA Journal, 2008, 46(6): 1442-1452.
[15] Tian Y, Liu P Q, Peng J. Using shock control bump to improve transonic buffet boundary of airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1421-1428 (in Chinese). 田云, 刘沛清, 彭健. 激波控制鼓包提高翼型跨声速抖振边界[J]. 航空学报, 2011, 32(8): 1421-1428.
[16] Huang J B, Xiao Z X, Liu J, et al. Simulation of shock wave buffet and its suppression on an OAT15A supercritical airfoil by IDDES[J]. Science China Physics, Mechanics and Astronomy, 2012, 55(2): 260-271.
[17] Caruana D, Mignosi A, Corrège M, et al. Buffet and buffeting control in transonic flow[J]. Aerospace Science and Technology, 2005, 9(7): 605-616.
[18] Zhou H. Numerical analysis of effect of mini-TED on aerodynamic characteristic of airfoils in transonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(8):1367-1373 (in Chinese). 周华. Mini-TED改变翼型跨声速性能的数值分析[J]. 航空学报, 2009, 30(8): 1367-1373.
[19] Barbut G, Braza M, Hoarau Y, et al. Prediction of transonic buffet around a wing with flap[C]//Progress in Hybrid RANS-LES Modelling. Berlin: Springer, 2010: 191-204.
[20] Wang G, Jiang Y W, Ye Z Y. An improved LU-SGS implicit scheme for high Reynolds number flow computations on hybrid unstructured mesh[J]. Chinese Journal of Aeronautics, 2012, 25(1): 33-41.
[21] Jiang Y W. Numerical solution of Navier-Stokes equations on generalized mesh and its application[D]. Xi'an: Northwestern Polytechnical University, 2013 (in Chinese). 蒋跃文. 基于广义网格的CFD方法及其应用[D]. 西安: 西北工业大学, 2013.
[22] Zhang W W, Gao C Q, Ye Z Y. Research progress on mesh deformation method in computational aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 303-319 (in Chinese). 张伟伟, 高传强, 叶正寅. 气动弹性计算中网格变形方法研究进展[J]. 航空学报, 2014, 35(2): 303-319.
[23] Soda A, Ralph V. Analysis of transonic aerodynamic interference in the wing-nacelle region for a generic transport aircraft[C]//The Proceedings of IFSAD 2005—International Forum on Aeroelasticity and Structural Dynamics. Munich: DLR, 2005.

文章导航

/