2.4 m跨声速风洞壁板参数对核心流均匀性的影响
收稿日期: 2014-09-16
修回日期: 2015-01-19
网络出版日期: 2015-01-26
Wall parameters influence on centerline flow uniformity in 2.4 m transonic wind tunnel
Received date: 2014-09-16
Revised date: 2015-01-19
Online published: 2015-01-26
刘光远 , 王瑞波 , 郭秋亭 , 魏志 , 谢疆宇 . 2.4 m跨声速风洞壁板参数对核心流均匀性的影响[J]. 航空学报, 2015 , 36(9) : 2930 -2938 . DOI: 10.7527/S1000-6893.2015.0026
Wall parameters influence on transonic flow field is complicated due to various parameters of transonic wind tunnel test section walls. One key to improve transonic equipment calibration quality and efficiency is to acquire the effect mechanism of wall parameters of wind tunnel test section on flow field uniformity. Based on 2.4 m transonic wind tunnel multi flow field calibration experiments, wall configuration parameters effect on centerline flow uniformity of large transonic wind tunnel test section is summarized and investigated by Mach number distribution standard deviation. Research results show that the centerline flow uniformity is sensitive to porosity ratio of acceleration region, which should be distributed continuously along flow direction. The overexpansion flow should be avoided in acceleration region in order to minimize the wave strength. The ejector-slot is capable of reducing blockage interference over the entire operating range.
[1] Chen D H, Yin L P, Wu W H, et al. The test technique for aircraft with high aspect ratio in the 2.4 meter transonic wind tunnel[J]. Acta Aerodynamica Sinica, 2009, 27(5): 542-546 (in Chinese). 陈德华, 尹陆平, 吴文华, 等. 2.4 m跨声速风洞大展弦比飞机测力试验技术研究[J]. 空气动力学学报, 2009, 27(5): 542-546.
[2] Bope A, Gern K L. High speed wind tunnel testing[M]. Beijing: Science Press, 1983 (in Chinese). 博普, 戈因. 高速风洞试验[M]. 北京: 科学出版社, 1983.
[3] Chan Y Y. Analysis of boundary layers on perforated walls of transonic wind tunnels[J]. Journal of Aircraft, 1981, 18(6): 469-473.
[4] Yang W V. Tran-air simulation of wind tunnel flow field subjected to various porous wall boundary condition settings, AIAA-1996-0556[R]. Reston: AIAA, 1996.
[5] Cong C H, Liu Q, Zhang Z F, et al. Numerical simulation of design of transonic wind tunnel perforated test section[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 1014-1019 (in Chinese). 丛成华, 刘琴, 张志峰, 等. 专用跨声速风洞开孔壁试验段设计数值模拟[J]. 航空学报, 2012, 33(6): 1014-1019.
[6] Benson D B. Boundary conditions for CFD simulations of supersonic boundary-layer flow through discrete holes, AIAA-2000-0888[R]. Reston: AIAA, 2000.
[7] Frink N T. Boundary condition for simulation of flow over porous surfaces[J]. Journal of Aircraft, 2003, 40(4): 692-698.
[8] Reed T D, Pope T C, Cooksey J M. Calibration of transonic and supersonic wind tunnels, NASA-CR-2920[R]. Washington, D.C.: NASA, 1977.
[9] Zheng G F. On the accelerating airflow problem in the test section of a transonic wind tunnel[J]. Journal of Nanjing Aeronautical Institute, 1982, 41(S1): 77-84 (in Chinese). 郑国锋. 跨声速风洞试验段中气流的加速问题[J]. 南京航空学院学报, 1982, 41(S1): 77-84.
[10] Jackson F M. Calibration of the AEDC-PWT 16-ft transonic tunnel at test section wall porosities of two, four, and six percent, AEDC-TM-76-13[R].Tennessee: AEDC,1976.
[11] Elfstrom G M. Optimum porosity for an inclined-hole transonic test section wall treated for edge tone noise reduction, AIAA-1988-2003[R]. Reston: AIAA, 1988.
[12] Marino A, Imperatore B, Ragni A. Streamwise porosity distribution optimization for minimising wall interference in a transonic wind tunnel, AIAA-2009-1485[R]. Reston: AIAA, 2009.
[13] Ching F L. Wind-tunnel wall interference reduction by streamwise porosity distribution[J]. AIAA Journal, 1972,10(4): 547-550.
[14] Allan M R, Badcock K J, Barakos G N, et al. Wind tunnel interference effects on a 70° delta wing[J]. The Aeronautical Journal, 2004, 108(1088): 505-513.
[15] Wang W X. The first term flowfield calibration in 2.4 m transonic wind tunnel, CARDC-2[R]. Mianyang: China Aerodynamics Research and Development Center, 1999 (in Chinese). 王维新. 2.4 m跨声速风洞第一期流场校测, CARDC-2 [R]. 绵阳: 中国空气动力研究与发展中心, 1999.
[16] Wang W X. The Second term flowfield calibration in 2.4 m transonic wind tunnel, CARDC-2[R]. Mianyang: China Aerodynamics Research and Development Center, 1999 (in Chinese). 王维新. 2.4 m跨声速风洞第二期流场校测, CARDC-2[R]. 绵阳: 中国空气动力研究与发展中心, 1999.
[17] Wang W X. The first term flowfield calibration in half model test section of 2.4 m transonic wind tunnel, CARDC-2[R]. Mianyang: China Aerodynamics Research and Development Center, 2003 (in Chinese). 王维新. 2.4 m跨声速风洞半模试验段第一期流场校测, CARDC-2[R]. 绵阳: 中国空气动力研究与发展中心, 2003.
[18] Hua J. Final report of the performance enhancement (flowfield calibration) in half model test section of 2.4 m transonic wind tunnel, CARDC-2[R]. Mianyang: China Aerodynamics Research and Development Center, 2003 (in Chinese). 华杰. 2.4 m跨声速风洞半模试验段性能拓展(流场校测)技术总结报告, CARDC-2[R]. 绵阳: 中国空气动力研究与发展中心, 2003.
[19] Zhong S D. The third term flowfield calibration in full model test section of 2.4 m transonic wind tunnel, CARDC-2[R]. Mianyang: China Aerodynamics Research and Development Center, 2006 (in Chinese). 钟世东. 2.4 m跨声速风洞全模试验段第三期流场校测, CARDC-2 [R]. 绵阳: 中国空气动力研究与发展中心, 2006.
[20] Commission of Science, Technology and Industry for National Defense (COSTIND). Specification for flow quality of high and low speed wind tunnels(GJB1179-91)[S]. Beijing: National Defence Industry Press, 1991 (in Chinese). 国防科学技术工业委员会. 高速风洞和低速风洞流场品质规范(GJB1179-91)[S]. 北京: 国防工业出版社, 1991.
[21] Zeng K C, Xiang J W. Uncertainty analysis of flight dynamic characteristics for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 798-808 (in Chinese). 曾开春, 向锦武. 高超声速飞行器飞行动力学特性不确定分析[J]. 航空学报, 2013, 34(4): 798-808.
[22] Li J Q, Zhang P, Wang Y Q. Method of uncertainty analysis for wind tunnel test data[J]. Acta Aerodynamica Sinica, 2000, 18(3): 299-306 (in Chinese). 李建强, 张平, 王义庆. 风洞数据不确定度分析方法[J]. 空气动力学学报, 2000, 18(3): 299-306.
[23] Xie J Y, Wu J Q, Zhong S D, et al. Uncertainty analysis for large aircraft test in 2.4 m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(6): 65-68 (in Chinese). 谢疆宇, 吴军强, 钟世东, 等. 2.4 m跨声速风洞大型飞机试验不确定度评估[J]. 实验流体力学, 2010, 24(6): 65-68.
[24] Carol D W, Robert M B. Wall boundary layer measurements for the NASA Langley transonic dynamics tunnel, NASA/TM-2007-214867[R]. Washington, D.C.: NASA,2007.
/
〈 | 〉 |