电子与控制

基于布谷鸟搜索算法的一类变体飞行器容错控制

  • 董朝阳 ,
  • 路遥 ,
  • 江未来 ,
  • 王青
展开
  • 1. 北京航空航天大学 航空科学与工程学院, 北京 100191;
    2. 北京航空航天大学 自动化科学与电气工程学院, 北京 100191
董朝阳 男, 博士, 教授, 博士生导师。主要研究方向: 飞行器总体设计、控制与制导, 电气系统综合。 Tel: 010-82313287 E-mail: dongchaoyang@buaa.edu.cn;路遥 男, 博士研究生。主要研究方向: 飞行器非线性控制方法, 任务决策与智能优化算法。 Tel: 010-82338161 E-mail: luyaosacred@126.com;江未来 男, 博士研究生。主要研究方向: 变体飞行器建模与控制, 切换LPV系统鲁棒控制。 Tel: 010-82313287 E-mail: jiangweilai@126.com;王青 女, 博士, 教授, 博士生导师。主要研究方向: 航天器控制与制导, 故障检测。 Tel: 010-82317337 E-mail: wangqing@buaa.edu.cn

收稿日期: 2014-08-18

  修回日期: 2014-09-26

  网络出版日期: 2015-01-20

基金资助

国家自然科学基金 (61374012, 61273083)

Fault tolerant control based on cuckoo search algorithm for a class of morphing aircraft

  • DONG Chaoyang ,
  • LU Yao ,
  • JIANG Weilai ,
  • WANG Qing
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;
    2. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China

Received date: 2014-08-18

  Revised date: 2014-09-26

  Online published: 2015-01-20

Supported by

National Natural Science Foundation of China (61374012, 61273083)

摘要

针对一类存在执行机构故障的分布式结构变体飞行器的控制分配问题,结合整数规划理论,提出一种基于布谷鸟搜索算法的容错控制方法。首先,设计虚拟控制指令,使得系统状态能够很好地跟踪参考模型;然后,将执行器概率性故障与饱和约束转换为整数规划问题中决策变量的约束,从而将执行器控制分配问题转化为一类整数规划问题;最后,采用改进的布谷鸟搜索算法进行求解,得到实际的执行器控制分配指令。仿真结果表明,在执行器存在概率性故障的情况下,该容错控制方法较无容错策略的情况能够有效提升系统的跟踪性能;与遗传算法相比,该算法得到的执行器控制分配结果更加精确。

本文引用格式

董朝阳 , 路遥 , 江未来 , 王青 . 基于布谷鸟搜索算法的一类变体飞行器容错控制[J]. 航空学报, 2015 , 36(6) : 2047 -2054 . DOI: 10.7527/S1000-6893.2015.0003

Abstract

According to the control allocation problem of a class of distributed frame morphing aircraft with actuator fault, combining with the theory of integer programming, a fault tolerant control method based on the cuckoo search algorithm is proposed. Firstly, a virtual control command is designed to ensure that the system states can track the reference model well. Afterwards, the probabilistic faults and saturation constrains of actuators are transformed into the constraints of decision variables in integer programming, which converts the problem of actuator control allocation into a type of integer programming problem. Finally, an improved cuckoo search algorithm is employed to solve the problem by obtaining the actual actuator control allocation commands. Simulation results illustrate that when the probabilistic actuator failures are considered, compared with the case without fault tolerant strategy, the developed fault tolerant control method can ameliorate the tracking capability of the system. The actuator control allocation results obtained by the proposed algorithm are more accurate comparing with those generated with genetic algorithm.

参考文献

[1] Gorissen D, Quaranta E, Ferraro M, et al. Value-based decision environment: vision and application[J]. Journal of Aircraft, 2014, 51(5): 1360-1372.
[2] Lu Y P, He Z. A survey of morphing aircraft control systems[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1906-1911 (in Chinese). 陆宇平, 何真. 变体飞行器控制系统综述[J]. 航空学报, 2009, 30(10): 1906-1911.
[3] Weisshaar T A. Morphing aircraft systems: historical perspectives and future challenges[J]. Journal of Aircraft, 2013, 50(2): 337-353.
[4] Mardanpour P, Hodges D H. Passive morphing of flying wing aircraft: Z-shaped configuration[J]. Journal of Fluids and Structures, 2014, 44: 17-30.
[5] Johansen T A, Fossen T I. Control allocation—a survey[J]. Automatica, 2013, 49(5): 1087-1103.
[6] Nieto-Wire C, Sobel K. Delta operator eigenstructure assignment for reconfigurable control of a tailless aircraft[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6): 1824-1839.
[7] Nieto-Wire C, Sobel K. Delta operator eigenstructure assignment for fault detection and control of a tailless aircraft[C]//Proceedings of Guidance, Navigation, and Control and Co-located Conferences. Reston: AIAA, 2013: 1-24.
[8] Liu C, Zhang S. Novel robust control framework for morphing aircraft[J]. Journal of Systems Engineering and Electronics, 2013, 24(2): 281-287.
[9] Zhang H Y, Chen M. Control allocation based on hybrid optimization fish swarm algorithm for near space vehicles[J]. Journal of Jilin University: Information Science Edition, 2014, 32(4): 369-376 (in Chinese). 张杭悦, 陈谋. 基于混合优化鱼群算法的近空间飞行器控制分配[J]. 吉林大学学报: 信息科学版, 2014, 32(4): 369-376.
[10] Jiang W L, Dong C Y, Wang T, et al. Fault tolerant control based on control allocation for morphing aircraft model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(3): 355-359 (in Chinese). 江未来, 董朝阳, 王通, 等. 基于控制分配的一类变体飞行器容错控制[J]. 北京航空航天大学学报, 2014, 40(3): 355-359.
[11] Wang X X, Liu C S, Yao X. Reconfigurable control based on PSO for multi-effector aircraft[J]. Electronics Optics & Control, 2014, 21(5): 68-72 (in Chinese). 王晓霞, 刘春生, 姚烯. 基于粒子群优化的多操纵面飞行器的重构控制[J]. 电光与控制, 2014, 21(5): 68-72.
[12] Yang X S, Deb S. Cuckoo search via Lévy flights[C]//Proceedings of 2009 World Congress on Nature & Biologically Inspired Computing. Piscataway, NJ: IEEE Press, 2009: 210-214.
[13] Yang X S, Deb S. Engineering optimisation by cuckoo search[J]. International Journal of Mathematical Modelling and Numerical Optimisation, 2010, 1(4): 330-343.
[14] Burnwal S, Deb S. Scheduling optimization of flexible manufacturing system using cuckoo search-based approach[J]. International Journal of Advanced Manufacturing Technology, 2013, 64(5): 951-959.
[15] Gandomt A H, Yang X S, Alavi A H. Cuckoo search algorithm: ameta-heuristic approach to solve structural optimization problem[J]. Engineering with Computers, 2013, 29(1): 17-35.
[16] Tiwari V. Face recognition based on cuckoo search algorithm[J]. Indian Journal of Computer Science and Engineering, 2012, 3(3): 401-405.
[17] Marichelvam M K. An improved hybrid cuckoo search (IHCS) metaheuristics algorithm for permutation flow shop scheduling problems[J]. International Journal of Bio-Inspired Computation, 2012, 4(4): 200-205.
[18] Wu J, Lu Y P. A distributed coordinated control scheme for morphing wings with sampled communication[J]. Chinese Journal of Aeronautics, 2010, 23(3): 364-369.
[19] Liu C S, Li C T, He Z. Adaptive control of a morphing aircraft through updating the number of actuators[C]//AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2012: 4445-1-4445-9.
[20] Raney D L, Montgomery R C, Green L L. Flight control using distributed shape-change effector arrays[C]//Proceedings of 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston: AIAA, 2000: 1560-1-1560-12.
[21] Khalil H K. Nonlinear systems[M]. 3rd ed. Zhu Y S, Dong H, Li Z Z, et al, translated. Beijing: Electronics Industry Press, 2011: 88-91 (in Chinese). Khalil H K. 非线性系统[M]. 3版. 朱义胜, 董辉, 李作洲, 等, 译. 北京: 电子工业出版社, 2011: 88-91.
[22] Zhu X E, Hao X, Xia S R. Feature selection algorithm based on Levy flight[J]. Journal of Zhejiang University: Engineering Science, 2013, 47(4): 638-643 (in Chinese). 朱晓恩, 郝欣, 夏顺仁. 基于Levy flight的特征选择算法[J]. 浙江大学学报: 工学版, 2013, 47(4): 638-643.
[23] Zhang Y W, Wang L, Wu Q D. Dynamic adaptation cuckoo search algorithm[J]. Control and Decision, 2014, 29(4): 617-622 (in Chinese). 张永韡, 汪镭, 吴启迪. 动态适应布谷鸟搜索算法[J]. 控制与决策, 2014, 29(4): 617-622.

文章导航

/