电子与控制

一种基于冗余测量的自适应卡尔曼滤波算法

  • 周启帆 ,
  • 张海 ,
  • 王嫣然
展开
  • 北京航空航天大学 自动化科学与电气工程学院, 北京 100191
周启帆 男, 博士研究生。主要研究方向: 组合导航系统。 Tel: 010-82339189 E-mail: zhouqifanbuaa@gmail.com;张海 男, 博士, 副教授, 博士生导师。主要研究方向: 自适应滤波技术, 组合导航系统, 智能交通, 低成本多传感器融合。 Tel: 010-82339366 E-mail: zhanghai@buaa.edu.cn;王嫣然 女, 硕士。主要研究方向: 组合导航系统。 E-mail: yanran22kk@gmail.com

收稿日期: 2014-06-27

  修回日期: 2015-01-14

  网络出版日期: 2015-01-19

基金资助

卫星应用研究院创新基金项目(2014_CXJJ-DH_06)

A redundant measurement adaptive Kalman filter algorithm

  • ZHOU Qifan ,
  • ZHANG Hai ,
  • WANG Yanran
Expand
  • School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China

Received date: 2014-06-27

  Revised date: 2015-01-14

  Online published: 2015-01-19

Supported by

Open Research Fund of The Academy of Satellite Application (2014_CXJJ-DH_06)

摘要

针对目前自适应滤波算法的不足,在测量系统量测噪声方差未知的情况下,设计了一种基于冗余测量的自适应卡尔曼滤波(RMAKF)算法。通过对系统冗余测量值的一阶、二阶差分序列进行有效的统计分析,可以准确估计系统量测噪声统计特性,进而在滤波过程中自适应调节噪声方差阵R,提高滤波精度。以全球定位系统/惯性导航系统(GPS/INS)松组合导航系统为对象进行了仿真实验,结果表明该算法在测量系统噪声特性未知或发生改变时,可对其进行准确估计,在采用低精度惯性器件情况下,滤波结果较其他主要自适应卡尔曼滤波算法有较明显的改进。

本文引用格式

周启帆 , 张海 , 王嫣然 . 一种基于冗余测量的自适应卡尔曼滤波算法[J]. 航空学报, 2015 , 36(5) : 1596 -1605 . DOI: 10.7527/S1000-6893.2015.0001

Abstract

In order to solve the problems of current adaptive Kalman filter, this paper proposes a redundant measurement adaptive Kalman filter (RMAKF) in the situation that the measurement noise variance is unknown. This method could accurately estimate the statistical characteristics of measurement noise through calculating the first and second order difference sequences and adaptively tuning the variance matrix of measurement noise R in the process to improve the accuracy and precision. The simulation results show that when the algorithm is applied in GPS/INS loosely coupled integrated system, the proposed method is capable of estimating the noise variance when the statistical characteristic is unknown or changed. The simulation also shows that the filtering results has a great improvement compared with other adaptive Kalman filter when using low-accuracy inertial sensors.

参考文献

[1] Jo K, Chu K. Interacting multiple model filter-based sensor fusion of GPS with in-vehicle sensors for real-time vehicle positioning[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(1): 329-343.
[2] Li X R, Jilkov V P. Overview of multiple-model methods for maneuvering target tracking[C]//SPIE's 48th Annual Meeting. San Diego: International Society for Optics and Photonics, 2003: 200-210.
[3] Rong L X, Bar-Shalom Y. A recursive multiple model approach to noise identification[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 671-684.
[4] Li L M, Gong W B, Liu H J. A carrier tracking algorithm based on adaptive extended Kalman filter[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1319-1328 (in Chinese). 李理敏, 龚文斌, 刘会杰. 基于自适应扩展卡尔曼滤波的载波跟踪算法[J]. 航空学报, 2012, 33(7): 1319-1328.
[5] Lu P, Zhao L, Chen Z. Improved Sage-Husa adaptive filtering and its application[J]. Journal of System Simulation, 2007, 19(15): 3503-3505 (in Chinese). 鲁平, 赵龙, 陈哲. 改进的 Sage-Husa 自适应滤波及其应用[J]. 系统仿真学报, 2007, 19(15): 3503-3505.
[6] Jiao Y L, Gao S S. Adaptive robust filtering algorithm in GPS/DR integrated navigation[J]. Journal of Chinese Inertial Technology, 2010, 18(3): 307-311 (in Chinese). 焦雅林, 高社生. GPS/DR 组合导航抗差自适应滤波算法[J]. 中国惯性技术学报, 2010, 18(3): 307-311.
[7] Li X L, Hu G D, Adaptive Kalman filter based on multiple model method[J]. Journal of System Simulation, 2008, 20(3): 590-592 (in Chinese). 李晓理, 胡广大. 基于多模型方法的自适应卡尔曼滤波[J]. 系统仿真学报, 2008, 20(3): 590-592.
[8] Ding W, Wang J. Improving adaptive Kalman estimation in GPS/INS integration[J]. Journal of Navigation, 2007, 60(3): 517-529
[9] Fang J C, Yang S. Study on innovation adaptive EKF for in-flight alignment of airborne POS[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(4): 1378-1388.
[10] Zhou Y L, Zhang H. An improved GPS/DR integrated position adaptive filtering algorithm[J]. Journal of Chinese Inertial Technology, 2009, 17(6): 728-733 (in Chinese). 周艳丽, 张海. 一种改进的 GPS/DR 组合位置自适应滤波算法[J]. 中国惯性技术学报, 2009, 17(6): 728-733.
[11] Sage A P, Husa G W. Adaptive filtering with unknown prior statistics[C]//Proceedings of joint automatic control conference. Boulder: American Institute of Chemical Engineers, 1969: 760-769.
[12] Zhang C Y, Approach to adaptive filtering algorithm[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(7): 96-99 (in Chinese). 张常云. 自适应滤波方法研究[J]. 航空学报, 1998, 19(7): 96-99.
[13] Hide C, Moore T. Adaptive Kalman filtering algorithms for integrating GPS and low cost INS[C]//Position Location and Navigation Symposium. Monterey: IEEE Aerospace and Electronic Systems Society, 2004: 227-233.
[14] Zhang H, Chang Y H. Measurement-based adaptive Kalman filtering algorithm for GPS/INS integrated navigation system[J]. Journal of Chinese Inertial Technology, 2011, 18(6): 696-701 (in Chinese). 张海, 常艳红. 基于 GPS/INS 不同测量特性的自适应卡尔曼滤波算法[J].中国惯性技术学报, 2011,18(6): 696-701.
[15] Qin Y Y, Zhang H Y, Wang S H. The principle of Kalman filter and integration navigation[M]. Xi'an: Northwestern Polytechnical University Press, 1998: 33-35 (in Chinese). 秦永元, 张洪钺, 汪叔华. 卡尔曼滤波与组合导航原理[M]. 西安: 西北工业大学出版社, 1998: 33-35.
[16] Liang S, Xu X S. Application of Sage Husa adaptive filter to integrated navigation system[J]. Journal of Test and Measurement Technology, 2011, 25(4): 328-331 (in Chinese). 梁松, 徐晓苏. Sage Husa 自适应滤波算法在捷联组合导航系统中的应用[J]. 测试技术学报, 2011, 25(4): 328-331.
[17] Wu F M, Yang Y X. An extended adaptive Kalman filtering in tight coupled GPS/INS integration[J]. Survey Review, 2010, 42(316): 146-154.
[18] Yang Y X, Cui X. Adaptively robust filter with multi adaptive factors[J]. Survey Review, 2008, 40(309): 260-270.
[19] Yang Y X, Ren X, Main progress of adaptively robust filter with applications in navigation[J]. Journal of Navigation and Positioning, 2013, 1(1): 9-15 (in Chinese). 杨元喜, 任夏. 自适应抗差滤波理论及应用的主要进展[J]. 导航定位学报, 2013, 1(1): 9-15.
[20] Qin Y Y, Inertial navigation[M]. Beijing: Science Press, 2005: 245-263 (in Chinese). 秦永元, 惯性导航[M]. 北京:科学出版社, 2005: 245-263.

文章导航

/