四涡系统构建及其特性的实验研究
收稿日期: 2014-10-24
修回日期: 2015-01-09
网络出版日期: 2015-01-19
基金资助
国家自然科学基金 (11072206)
Four-vortex system reconstruction and experimental study of its wake features
Received date: 2014-10-24
Revised date: 2015-01-09
Online published: 2015-01-19
Supported by
National Natural Science Foundation of China (11072206)
飞机尾涡是与升力相关的固有流动现象,威胁着机场附近的飞行安全,同时也限制了机场使用效率。在矩形机翼翼尖以一定方式安装涡流发生器,产生与主涡旋向相反的小涡,来构建一种具有自我消散机制的四涡系统,能实现尾涡集中能力的快速消散。结合流动显示和粒子成像测速(PIV)测量,探索了在不同的参数匹配下,下游25个翼展范围内该四涡系统的空间发展过程、涡量发展曲线,以及45个翼展范围内主涡环量的衰减程度。实验结果表明,受小涡诱导,尾涡出现了相交不稳定性,主涡提前破裂,涡量随之降低。当小涡和主涡的初始环量比为-0.581、初始距离比为0.5时,45个翼展范围内,主涡环量衰减34.7%。该实验结果为低尾流机翼的设计提供了一定的参考。
鲍锋 , 朱睿 , 刘志荣 , 何意 . 四涡系统构建及其特性的实验研究[J]. 航空学报, 2015 , 36(5) : 1491 -1499 . DOI: 10.7527/S1000-6893.2015.0013
The aircraft wake vortex is a coherent flow phenomenon due to the lift generation mechanism, which threatens the flight safety and limits airport operation efficiency. By mounting a vortex generator onto the wingtip of a rectangular airfoil, a secondary vortex that rotated reversely to the primary vortex is produced, thereby constructing a self-destructed four-vortex system to accelerate the dissipation of the primary vortex. Combined with flow visualizations and particle image velocimetry(PIV) measurements, a parametric study of the spatial evolution and vorticity development of the four-vortex system in 25 wingspans, as well as the circulation reduction rate in 45 wingspans, is conducted. The results exhibit that the interaction instability of the wake vortex is triggered by the secondary vortex in advance, resulting in the premature breakdown of the primary vortex, resulting in the decline of its vorticity. As the initial circulation ratio is -0.581 and the initial distance ratio is 0.5, the circulation of the primary vortex is reduced most significantly (34.7%) in 45 wingspans.The results would provide a scheme for the design of airfoils with weaker vortices.
Key words: four-vortex system; aircraft wake; vortex generator; flow visualization; PIV
[1] Breitsamter C. Wake vortex characteristics of transport aircraft[J]. Progress in Aerospace Sciences, 2011, 47(2): 89-134.
[2] Luckner R, Höhne G, Fuhrmann M. Hazard criteria for wake vortex encounters during approach[J]. Aerospace Science and Technology, 2004, 8(8): 673-687.
[3] Crow S C.Stability theory for a pair of trailing vortices[J].AIAA Journal, 1970, 8(12): 2172-2179.
[4] Brashears M R, Hallock J N. Aircraft wake vortex transport model[J]. Journal of Aircraft, 1974, 11(5): 265-272.
[5] Bilanin A J, Snedeker R S. An analytic and experimental investigation of the wakes behind flapped and unflappedwings, AFFDL-TR-74-90[R].Virginia: National Technical Information Service, 1974.
[6] Donaldson C P, Bilanin A J. Vortex wakes of conventional aircraft, AGARD-AG-204[R]. London: Advisory Group for Aerospace Research & Development, 1975.
[7] Ciffone D L, Pedley B. Measured wake-vortex characteristics of aircraft in ground effect[J]. AIAA Journal, 1978, 16(2): 78-109.
[8] Greene G C. Wake vortex alleviation, AIAA-1981-0798 [R]. Reston: AIAA, 1981.
[9] Perry R B, Hinton D A, Stuever R A. NASA wake vortex research for aircraft spacing, AIAA-1997-0057[R]. Reston: AIAA, 1997.
[10] Machol R E. Wake vortices—a primer[J]. FAA Aviation Safety Journal, 1993, 3(1): 16-19.
[11] Crouch J D. Instability and transient growth for two trailingvortexpairs[J]. Journal of Fluid Mechanics, 1997, 350: 311-330.
[12] Rennich S C, Lele S K. Method for accelerating the destruction of aircraft wake vortices[J]. Journal of Aircraft, 1999, 36(2): 398-404.
[13] Fabre D, Jacquin L. Stability of a four-vortex aircraft wake model[J]. Physics of Fluids, 2000, 12(10): 2438-2443.
[14] Gerz T, Holzäpfel F, Darracq D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences, 2002, 38(3): 181-208.
[15] Jacquin L, Molton P, Loiret P, et al. An experiment on jet-wake vortex interaction, AIAA-2007-4363[R].Reston: AIAA, 2007.
[16] Huang S Q, Shen G X, Konrath R, et al. Experimental investigation of influence of jets on aircraft wake vortices[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5): 899-908 (in Chinese). 黄烁桥, 申功忻, Konrath R, 等. 喷流对飞机尾流涡影响的试验研究[J]. 航空学报, 2010, 31(5): 899-908.
[17] Lee T, Gerontakos P. Effect of winglet dihedral on a tip vortex[J]. Journal of Aircraft, 2006, 43(1): 117-124.
[18] Kauertz S, Neuwerth G. Excitation of instabilities in the wake of an airfoil by means of active winglets[J]. Aerospace Science and Technology, 2006, 10(7): 551-562.
[19] Bao F, Vollmers H, Mattner H. Experimental study on controlling wake vortex in water towing tank[C]//20th International Congress on Instrumentation in Aerospace Simulation Facilities. Piscataway, NJ: IEEE Press, 2003: 214-223.
[20] Allen A, Breitsamter C. Experimental investigation of counter-rotating four vortex aircraft wake[J]. Aerospace Science and Technology, 2009, 13(2): 114-129.
[21] Quackenbush T R, Boschitsch A H, Bilanin A J. Computational and experimental studies in multipairwake vortex instabilities, AIAA-2013-3190[R].Reston: AIAA, 2013.
[22] Ortega J M, Bristol R L, Savas Ö. Experimental study of the instability of unequal-strength counter-rotating vortex pairs[J]. Journal of Fluid Mechanics, 2003, 474: 35-84.
[23] Haverkamp S, Neuwerth G, Jacob D. Studies on the influence of outboard flaps on the vortex wake of a rectangular wing[J]. Aerospace Science and Technology, 2003, 7(5): 331-339.
[24] Haverkamp S, Neuwerth G, Jacob D. Active and passive vortex wake mitigation using control surfaces[J]. Aerospace Science and Technology, 2005, 9(1): 5-18.
[25] Babie B M, Nelson R C. An experimental investigation of bending wave instability modes in a generic four-vortex wake[J]. Physics of Fluids, 2010, 22: 077101-1-077101-15.
[26] He Y, Yang J W, Bao F. Wake vortex control using modified flaps[J]. Applied Mechanics and Materials, 2013, 365: 827-834.
[27] Fabre D, Jacquin L, Loof A. Optimal perturbations in a four-vortex aircraft wake in counter-rotating configuration[J]. Journal of Fluid Mechanics, 2002, 451: 319-328.
[28] Thomas G, Robert B. Decay characteristics of single and double wake-vortex pairs in different atmospheric flow realizations[C]//25th International Congress of the Aeronautical Sciences.Hamburg: ICAS, 2006: 1-13.
[29] Chatelain P, Curioni A, Bergdorf M, et al. Billion vortex particle direct numerical simulations of aircraft wakes[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(13): 1296-1304.
[30] Chatelain P, Gazzola M, Kern S, et al. Optimization of aircraft wake alleviation schemes through an evolution strategy[C]//9th High Performance Computing for Computational Science. Heidelberg: Springer, 2011: 210-221.
[31] Jacquin L, Fabre D, Sipp D, et al. Instability and unsteadiness of aircraft wake vortices[J]. Aerospace Science and Technology, 2003, 7(8): 577-593.
/
〈 | 〉 |