电子与控制

一种新的基于TDOA与GROA的无源定位算法

  • 杜彦伸 ,
  • 魏平 ,
  • 张花国
展开
  • 电子科技大学 电子工程学院, 成都 611731
魏平 男, 博士, 教授, 博士生导师。主要研究方向: 无线电侦察, 阵列信号处理。 E-mail: pwei@uestc.edu.cn;张花国 男, 博士, 副教授, 硕士生导师。主要研究方向: 通信信号处理。 E-mail: uestczhg@163.com

收稿日期: 2014-09-11

  修回日期: 2015-01-13

  网络出版日期: 2015-01-19

基金资助

国家自然科学基金 (61201282)

A novel solution for passive source localization algorithm using TDOA and GROA measurements

  • DU Yanshen ,
  • WEI Ping ,
  • ZHANG Huaguo
Expand
  • School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Received date: 2014-09-11

  Revised date: 2015-01-13

  Online published: 2015-01-19

Supported by

National Natural Science Foundation of China (61201282)

摘要

针对基于到达时间差(TDOA)与到达增益比(GROA)的辐射源无源定位问题,提出了一种新的定位算法。首先通过引入一个中间变量,根据TDOA和GROA测量模型,构造一个约束加权最小二乘(CWLS)估计。由于这个CWLS问题是非凸的优化问题,现有的方法不能很好地求解。为此,提出了一种有效的方法可以求解到其全局最优解。最后,所提算法被推广到观测站存在自定位误差时的定位求解。计算机仿真结果验证了所提算法能够获得优于传统两步加权最小二乘法(2WLS)的定位性能,能够在更大的噪声条件下达到克拉美罗下界(CRLB)。

本文引用格式

杜彦伸 , 魏平 , 张花国 . 一种新的基于TDOA与GROA的无源定位算法[J]. 航空学报, 2015 , 36(9) : 3034 -3040 . DOI: 10.7527/S1000-6893.2015.0018

Abstract

This paper propose a novel method for passive source localization based on time differences of arrival (TDOA) and gain ratios of arrival (GROA) measurements. By introducing an intermediate variable into the TDOA and GROA measurement models, a constrained weighted least squares (CWLS) estimator is presented. Due to the nonconvex feature of the CWLS problem, the existing methods cannot perform very well. To handle this difficulty, an efficient method is proposed to find its global solution. Moreover, the proposed method is extended to solve the localization problem with sensor position errors. Simulation results corroborate that the proposed method outperforms the two-step weighted least squares method and can attain the Cramér-Rao lower bound (CRLB) at higher noise levels.

参考文献

[1] Chen J C, Kung Y, Hudson R E. Source localization and beamforming[J]. IEEE Signal Processing Magazine, 2002, 19(2): 30-39.
[2] Rappaport T S, Reed J, Woerner B D. Position location using wireless communications on highways of the future[J]. IEEE Communications Magazine, 1996, 34(10): 33-41.
[3] Wang H, Liu C Z, Wang X G, et al. An accurate target localization method for multilateration[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1269-1274 (in Chinese). 王洪, 刘昌忠, 汪学刚, 等. 一种多点定位的目标位置精确解算方法[J]. 航空学报, 2011, 32(7): 1269-1274.
[4] Weinstein E. Optimal source localization and tracking from passive array measurements[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1982, 30(1): 69-76.
[5] Cheung K W, So H C, Ma W K, et al. Least squares algorithms for time-of-arrival-based mobile location[J]. IEEE Transactions on Signal Processing, 2004, 52(4): 1121-1130.
[6] Chan F K W, So H C, Zheng J, et al. Best linear unbiased estimator approach for time-of-arrival based localisation[J]. IET Signal Processing, 2008, 2(2): 156-162.
[7] Chan Y T, Ho K C. A simple and efficient estimator for hyperbolic location[J]. IEEE Transactions on Signal Processing, 1994, 42(8): 1905-1915.
[8] Stoica P, Li J. Source localization from range-difference measurements[J]. IEEE Signal Processing Magazine, 2006, 23(6): 63-66.
[9] Chen S C, He H Y, Yu H G. Constrained total least-squares for source location using TDOA measurements in the presence of sensor position errors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1165-1173 (in Chinese). 陈少昌, 贺慧英, 禹华钢. 传感器位置误差条件下的约束总体最小二乘时差定位算法[J]. 航空学报, 2013, 34(5): 1165-1173.
[10] Ho K C, Xu W. An accurate algebraic solution for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing, 2004, 52(9): 2453-2463.
[11] Du Y S, Wei P, Li W C, et al. Doppler shift based target localization using semidefinite relaxation[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2014, 97(1): 397-400.
[12] Blatt D, Hero A O. Energy-based sensor network source localization via projection onto convex sets[J]. IEEE Transactions on Signal Processing, 2006, 54(9): 3614-3619.
[13] Ho K C, Sun M. An accurate algebraic closed-form solution for energy-based source localization[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(8): 2542-2550.
[14] Gholami M R, Vaghefi R M, Strom E G. RSS-based sensor localization in the presence of unknown channel parameters[J]. IEEE Transactions on Signal Processing, 2013, 61(15): 3752-3759.
[15] Gavish M, Weiss A J. Performance analysis of bearing-only target location algorithms[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(3): 817-828.
[16] Dog^ancay K. Bearings-only target localization using total least squares[J]. Signal Processing, 2005, 85(9): 1695-1710.
[17] Ho K C, Sun M. Passive source localization using time differences of arrival and gain ratios of arrival[J]. IEEE Transactions on Signal Processing, 2008, 56(2): 464-477.
[18] Hao B, Li Z, Si J, et al. Passive multiple disjoint sources localization using TDOAs and GROAs in the presence of sensor location uncertainties[C]//IEEE International Conference on Communications (ICC), 2012: 47-52.
[19] Beck A, Stoica P, Li J. Exact and approximate solutions of source localization problems[J]. IEEE Transactions on Signal Processing, 2008, 56(5): 1770-1778.
[20] Cheney E, Kincaid D. Numerical mathematics and computing[M]. Stamford, USA: Cengage Learning, 2012.

文章导航

/