采用流动控制的超声速内埋物投放特性研究
收稿日期: 2014-09-16
修回日期: 2014-10-08
网络出版日期: 2015-01-09
基金资助
国家级项目
Investigation on characteristics of store release from internal bay in supersonic flow under flow control
Received date: 2014-09-16
Revised date: 2014-10-08
Online published: 2015-01-09
Supported by
National Level Project
针对马赫数Ma>3飞行状态下的内埋物安全投放难题,提出了两种适用于非平坦舱体外形的超声速内埋物投放分离过程的流动控制方法:第一种方法采用了圆棒扰流器,第二种方法采用气帘喷流。为了验证两种不同流动控制方法的效果,引入结构嵌套六自由度动态网格技术和基于k-ω湍流模型的Navier-Stokes方程计算,对包括重力投放、弹射投放、采用圆棒扰流器的重力投放和采用气帘的重力投放等4种不同的投放分离状态进行了动态全过程的计算对比分析。通过对仿真计算结果分析发现,当来流马赫数Ma∞>3时,采用流动控制的投放物分离运动特性产生了明显的变化。由投放物下落过程中的俯仰偏航特性可以得出:采用圆棒流动控制有利于安全分离;气帘流动控制具有应用潜力,但采用这种方法需要针对特定的投放条件进行优化,否则可能诱发投放物在俯仰方向的姿态发散。
郭亮 , 王纯 , 叶斌 , 谢云恺 , 童明波 . 采用流动控制的超声速内埋物投放特性研究[J]. 航空学报, 2015 , 36(6) : 1752 -1761 . DOI: 10.7527/S1000-6893.2014.0325
To solve the problem of safety release of internal bay at supersonic condition (Mach number Ma>3), two methods of flow control which are suitable for supersonic internal bay with a large curvature contour are proposed in this paper. About the two different flow control methods, one uses a rod spoiler, and the other uses a jet screen. In order to verify their effectiveness, comparison and analysis of supersonic store release in four different ways including gravity release, ejection release, gravity release with rod spoiler and gravity release with jet screen is presented through a series of simulation, by using six degrees of freedom moving body by leveraging the overset gridding technique and Navier-Stokes solution based on k-ω turbulence model. Based on the result, dynamic characteristics of store separation with flow control obviously change at free stream Mach number Ma∞>3. The following conclusions can be reached based on pitch/yaw property during store dropping: the rod spoiler is favorable to safe separation; the jet screen has application potential; however, parameters of jet screen should be designed in optimum according to specific condition, otherwise store may be induced to an attitude divergence in pitch.
Key words: flow control; supersonic; internal bay; store separation; numerical computation
[1] Wu J F, Luo X F, Fan Z L. Flow control method to improve cavity flow and store separation characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1840-1845 (in Chinese). 吴继飞, 罗新福, 范召林.内埋式弹舱流场特性及武器分离特性改进措施[J]. 航空学报, 2009, 30(10): 1840-1845.
[2] Wu J F, Luo X F, Fan Z L. Experimental investigation of cavity flow characteristics at subsonic, transonic and supersonic speeds[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(1): 71-75 (in Chinese) 吴继飞, 罗新福, 范召林. 亚、跨、超声速下空腔流场特性实验研究[J]. 实验流体力学, 2008, 22(1): 71-75.
[3] Wu J F. Investigation on aerodynamic characteristics of internal weapons bay system[D]. Mianyang: China Aerodynamics Research and Development Center, 2012 (in Chinese). 吴继飞. 内埋武器舱系统气动特性研究[D]. 绵阳: 中国空气动力研究与发展中心, 2012.
[4] Yang D G, Li J Q, Luo X F. Investigation on flowing characteristics of the internal weapon cavity in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4): 33-39 (in Chinese). 杨党国, 李建强, 罗新福, 等.弹穴流动特性高速风洞试验研究[J]. 实验流体力学, 2006, 20(4): 33-39.
[5] Yang D G. Study on aeroacoustic characteristics and noise suppressions for internal weapon bays[D]. Mianyang: China Aerodynamics Research and Development Center, 2010 (in Chinese). 杨党国. 内埋武器舱气动声学特性与噪声抑制研究[D]. 绵阳: 中国空气动力研究与发展中心, 2010.
[6] Li J, Li T, Zhang Q F. The mechanism and control of an open cavity flow[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(1): 80-83 (in Chinese). 黎军, 李天, 张群峰. 开式流动腔体的流动机理与控制[J].实验流力学, 2008, 22(1): 80-83.
[7] Feng Q, Cui X C. Study on integrated flow control for weapon bay of flying wing configuration aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(5): 781-787 (in Chinese). 冯强, 崔晓春. 飞翼布局飞机武器舱综合流动控制技术研究[J]. 航空学报, 2012, 33(5): 781-787.
[8] Feng Q, Zhang Y, Cui X C. Study on the effect of weapons bay on aerodynamic characteristics of flying wing aircraft and its control[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(3): 31-34 (in Chinese). 冯强, 张洋, 崔晓春. 弹舱对飞翼布局飞机气动特性影响及其控制[J]. 实验流体力学, 2013, 27(3): 31-34.
[9] Guan D H, Cai W M. The research for the spoiler's effect on the yawing attitude angle of the misile in the bay [J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4): 942-947 (in Chinese). 管德会, 蔡为民. 扰流板对内埋导弹偏航姿态角的影响研究[J]. 航空学报, 2014, 35(4): 942-947.
[10] Henderson J, Badcock K, Richards B E. Subsonic and transonic transitional cavity flows, AIAA-2000-1966[R]. Reston: AIAA, 2000.
[11] Ukeiley L, Murray N. Velocity and surface pressure measurements in an open cavity[J]. Experiments in Fluids, 2005, 38(5): 656-671.
[12] Chung K M. A study of transonic rectangular cavity of varying dimensions, AIAA-1999-1909[R]. Reston: AIAA, 1999.
[13] Plentovich E B, Chu J, Tracy M B. Effects of yaw angle and reynolds numbers on rectangular-box cavities at subsonic and transonic speeds, NASA Technical Paper-3099[R]. Washington, D.C.: NASA, 1991.
[14] Plentovich E B. Three-dimensional cavity flow fields at subsonic and transonic speeds, NASA Technical Memorandum-4209[R]. Washington, D.C.: NASA, 1990.
[15] McGrath S F, Shaw L L Jr. Active control of shallow cavity acoustic resonace, AIAA-1996-1949[R]. Reston: AIAA, 1996.
[16] Stanek M J, Raman G, Kibens V. Control of cavity resonance through very high frequency forcing, AIAA-2000-1905[R]. Reston: AIAA, 2000.
[17] Bower W W, Kibens V, Cary A W, et al. High-frequency excitation active flow control for high-speed weapon release-HIFEX, AIAA-2004-2513[R]. Reston: AIAA, 2004.
/
〈 | 〉 |