流体力学与飞行力学

DLR-F6翼身组合体的高阶精度数值模拟

  • 王运涛 ,
  • 孙岩 ,
  • 王光学 ,
  • 张玉伦 ,
  • 李伟
展开
  • 1. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000;
    2. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000
王运涛 男, 博士, 研究员, 博士生导师。主要研究方向: 计算空气动力学。 Tel: 0816-2463015 E-mail: ytwang@skla.cardc.cn;孙岩 男, 博士研究生。主要研究方向: 计算流体力学。 Tel: 0816-2463205 E-mail: supersunyan@163.com;张玉伦 男, 硕士, 副研究员。主要研究方向: 流体力学。 Tel: 0816-2463279 E-mail: ylzhang@skla.cardc.cn;李伟 男, 硕士, 研究实习员。主要研究方向: 计算空气动力学。 Tel: 0816-2463274 E-mail: kuaileo6@163.com

收稿日期: 2014-09-07

  修回日期: 2014-12-29

  网络出版日期: 2015-01-07

基金资助

国家重点基础研究发展计划 (2014CB744803)

High-order accuracy numerical simulation of DLR-F6 wing-body configuration

  • WANG Yuntao ,
  • SUN Yan ,
  • WANG Guangxue ,
  • ZHANG Yulun ,
  • LI Wei
Expand
  • 1. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2014-09-07

  Revised date: 2014-12-29

  Online published: 2015-01-07

Supported by

National Key Basic Research Program of China (2014CB744803)

摘要

基于雷诺平均Navier-Stokes(RANS)方程和结构网格技术,采用五阶空间离散精度的加权紧致非线性格式(WCNS)和剪切应力输运(SST)两方程湍流模型,开展了DLR-F6翼身组合体的高阶精度数值模拟研究。主要目的是确认WCNS模拟跨声速典型运输机构型的能力。采用粗、中、细3套网格开展了网格收敛性研究,从气动特性、压力分布、表面流态等方面研究了网格密度对DLR-F6翼身组合体气动特性的影响;采用中等网格开展了来流迎角对气动特性的影响研究。通过与试验数据、CFL3D软件和TRIP软件计算结果的对比,表明网格密度主要影响激波位置和压差阻力系数,同时对翼身结合部分离区大小有一定影响;采用高阶精度计算方法显著提高了气动力系数的模拟精度,力矩系数数值模拟结果与试验的差异有待进一步分析。

本文引用格式

王运涛 , 孙岩 , 王光学 , 张玉伦 , 李伟 . DLR-F6翼身组合体的高阶精度数值模拟[J]. 航空学报, 2015 , 36(9) : 2923 -2929 . DOI: 10.7527/S1000-6893.2014.0362

Abstract

Based on the Reynolds-averaged Navier-Stokes (RANS) equations and structured grid technology, the fifth-order weighted compact nonlinear scheme (WCNS) and shear stress transport (SST) turbulence model are adopted to conduct a high-order numerical simulation of DLR-F6 wing-body configuration, for the purpose of validating the ability of WCNS in the simulation of typical transport configuration at transonic speed. The grid convergence study is performed with coarse, medium and fine grid systems, the effects of grid density on the simulation of DLR-F6 wing-body configuration are studied from aerodynamic characteristics, pressure distribution and flow pattern on the surface. The variation of aerodynamic characteristics with angles of attack is performed with the medium grid. Compared to the experimental data, CFL3D and TRIP results, the numerical results indicate that the grid density mainly affect the location of shock wave and pressure drag coefficient, and slightly affect the size of separation zone at the wing-body juncture. The numerical accuracy is significantly improved with high-order numerical method and the discrepancy of pitching moment coefficients between numerical data and experimental data needs further study.

参考文献

[1] Johnson F T, Tinoco E N, Jong Y. Thirty years of development and application of CFD at Boeing commercial airplane, Seattle,AIAA-2003-3439[R]. Reston:AIAA,2003.
[2] Tinoco E N, Bogue D R, Kao T J, et al. Progress toward CFD for full flight envelope[J]. The Aeronautical Journal, 2005, 109(1100): 451-460.
[3] Xu J, Liu Q H, Cai J S, et al. Drag prediction based on overset grids with implict hole cutting technique[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 208-217 (in Chinese). 徐嘉, 刘秋洪, 蔡晋生, 等. 基于隐式嵌套重叠网格技术的阻力预测[J]. 航空学报, 2013, 34(2): 208-217.
[4] Zhang W S, Chen H X, Zhang Y F, et al. Nacelle strake'saerodynamic characteristics effects on high-lift configuration of transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1): 76-85 (in Chinese). 张文升, 陈海昕, 张宇飞, 等. 短舱扰流片对运输机增升装置气动特性的影响[J]. 航空学报, 2013, 34(1): 76-85.
[5] Slotnick J, Khodadoust A, Alonso J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences, NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014.
[6] Salas M D. Digital flight: The last CFD aeronaoutical grand challenge[J]. Journal of Scientific Computing, 2006,28(2-3): 479-505.
[7] Levy D W, Zickuhr T, Vassberg J C, et al. Summary of data from the first AIAA CFD drag prediction workshop, AIAA-2002-0841[R]. Reston: AIAA, 2002.
[8] Laflin K R, Klausmeyer S M, Zickuhr T, et al. Data summary from the second AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2005, 42(5): 1165-1178.
[9] Vassberg J C, Tinoco E N, Mani M, et al. Abridged summary of the third AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2008, 45(3): 781-798.
[10] Vassberg J C, Tinoco E N, Mani M, et al. Summary of the fourth AIAA CFD drag prediction workshop, AIAA-2010-4547[R]. Reston: AIAA, 2010.
[11] Levy D W, Laflin K R, Tinoco E N, et al. Summary of data from the fifth AIAA CFD drag prediction workshop, AIAA-2013-0046[R]. Reston: AIAA, 2013.
[12] Hemsch M, Morrision J. Statistical analysis of CFD solutions for 2nd drag prediction workshop, AIAA-2005-0556[R]. Reston: AIAA, 2005.
[13] Deng X G, Zhang H X. Developing high-order weightedcompact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1): 24-44.
[14] Deng X G, Mao M L, Tu G H, et al. Geometric conservation law and application to high-order finite difference scheme with stationary grid[J]. Journal of Computational Physics, 2011, 230(4): 1100-1115.
[15] Deng X G, Min R B, Mao M L, et al. Further studies on geometric conservation law and application to high-order finite difference scheme with stationary grid[J]. Journal of Computational Physics, 2013, 239: 90-111.
[16] Menter F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[17] Godard J L. F6 model tests in the ONERA S2MA wind tunnel[C]//The 2nd AIAA CFD Drag Prediction Workshop. Reston: AIAA, 2003.
[18] Wang Y T, Wang G X, Zhang Y L. Validation of TRIP2.0: Numerical simulation of DPWII complex configuration[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1): 34-40 (in Chinese). 王运涛, 王光学, 张玉伦. TRIP2.0软件的确认:DPWII复杂组合体的数值模拟[J]. 航空学报, 2008, 29(1): 34-40.
[19] Vassberg J C, Tinoco E N, Mani M, et al. Comparison of NTF experimental data with CFD predictions from the third AIAA CFD drag prediction workshop, AIAA-2008-6918[R]. Reston: AIAA, 2008.
[20] Tinoco E N. Drag prediction with the Zeus/CFL3D system, AIAA-2004-0552[R]. Reston: AIAA, 2004.

文章导航

/