电子与控制

一种高光谱图像的双压缩感知模型

  • 冯燕 ,
  • 王忠良 ,
  • 王丽
展开
  • 1. 西北工业大学 电子信息学院 陕西省信息获取与处理重点实验室, 西安 710129;
    2. 铜陵学院 电气工程学院, 铜陵 244000
王忠良 男, 博士, 讲师。主要研究方向: 高光谱图像压缩感知和解混、图像处理。 E-mail: asdwzl@hotmail.com

收稿日期: 2014-09-15

  修回日期: 2014-12-10

  网络出版日期: 2014-12-30

基金资助

国家自然科学基金 (61071171); 安徽省高等学校省级自然科学研究项目(KJ2013B298); 西北工业大学博士论文创新基金(CX201424)

A double compressed sensing model of hyperspectral imagery

  • FENG Yan ,
  • WANG Zhongliang ,
  • WANG Li
Expand
  • 1. Shaanxi Key Lab of Information Acquisition and Processing, School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710129, China;
    2. Department of Electric Engineering, Tongling University, Tongling 244000, China

Received date: 2014-09-15

  Revised date: 2014-12-10

  Online published: 2014-12-30

Supported by

National Natural Science Foundation of China (61071171); University Provincial Natural Science Research Project of Anhui Province (KJ2013B298); Doctorate Foundation of Northwestern Polytechnical University (CX201424)

摘要

高光谱图像因其海量数据性,给存储、传输及后续分析处理带来了挑战。压缩感知理论提供了一种全新的信号采集框架。针对高光谱数据的三维特性,提出一种双压缩感知的采样与重构模型。该模型在采样阶段兼顾高光谱数据的空间和谱间稀疏特性,构造了能同时实现空间和谱间压缩采样的感知矩阵;重构阶段不同于传统的压缩感知重构方法直接重构高光谱数据,而是将高光谱数据分离成端元和丰度分别进行重构,然后利用重构的端元和丰度信息合成高光谱数据。实验结果表明,所提双压缩感知在低采样率下重构精度较三维压缩采样提高了10 dB以上,更为显著的是运算速度提升了3个数量级,同时该方法还便于获得端元和丰度信息。

本文引用格式

冯燕 , 王忠良 , 王丽 . 一种高光谱图像的双压缩感知模型[J]. 航空学报, 2015 , 36(9) : 3041 -3049 . DOI: 10.7527/S1000-6893.2014.0350

Abstract

It is challenging for hyperspectral images to store, transport and subsequently analyze and process in terms of its huge amounts of data. Compressed sensing theory provides a new signal collection framework. A double compressive sampling and reconstruction model is proposed based on the three-dimensional characteristics of hyperspectral data. During the sampling stage, in terms of the sparsity of hyperspectral data between spatial and spectral, a sensing matrix is constructed to carry out spatial and spectral compressive sampling simultaneously. At the reconstruction stage, the proposed algorithm is different from the traditional reconstruction methods of compressed sensing, with which hyperspectral data are reconstructed directly; instead, with the proposed method, hyperspectral data are separated into endmembers and abundances to reconstruct respectively, then hyperspectral data are generated by reconstructed endmembers and abundances. Experimental results show that the reconstruction accuracy of double compressed sensing is improved by more than 10 dB under low sampling rate sampling, compared with three-dimensional compressive sampling, furthermore the computing speed is ascended by 3 orders of magnitude. Meanwhile, as a byproduct, endmembers and abundances can be obtained conveniently.

参考文献

[1] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[2] Candes E J, Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12):4203-4215.
[3] Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
[4] Shu X B, Ahuja N. Imaging via three-dimensional compressive sampling (3DCS)[C]//IEEE International Conference on Computer Vision. Washington, D.C.: IEEE Computer Society, 2011: 439-446.
[5] Liu H Y, Wu C K, Lyu P, et al. Compressed hyperspectral image sensing reconstruction based on interband prediction and joint optimization[J]. Journal of Electronics & Information Technology, 2011, 33(9): 2248-2252 (in Chinese). 刘海英, 吴成柯, 吕沛, 等. 基于谱间预测和联合优化的高光谱压缩感知图像重构[J]. 电子与信息学报, 2011, 33(9): 2248-2252.
[6] Liu H Y, Li Y S, Wu C K, et al. Compressed hyperspectral image sensing based on interband prediction[J]. Journal of Xidian University, 2011, 38(3): 37-41 (in Chinese). 刘海英, 李云松, 吴成柯, 等. 一种高重构质量低复杂度的高光谱图像压缩感知[J]. 西安电子科技大学学报, 2011, 38(3): 37-41.
[7] Feng Y, Jia Y B, Cao Y M, et al. Compressed sensing projection and compound regularizer reconstruction for hyperspectral images[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1466-1473 (in Chinese). 冯燕, 贾应彪, 曹宇明, 等. 高光谱图像压缩感知投影与复合正则重构[J]. 航空学报, 2012, 33(8): 1466-1473.
[8] Bioucas-Dias J M, Plaza A, Dobigeon N, et al. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 354-379.
[9] Nascimento J M P, Dias J M B. Vertex component analysis: A fast algorithm to unmix hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 898-910.
[10] Fowler J E. Compressive-projection principal component analysis[J]. IEEE Transactions on Image Processing, 2009, 18(10): 2230-2242.
[11] Fowler J E. Compressive-projection principal component analysis and the first eigenvector[C]//Data Compression Conference. Washington, D.C.: IEEE Computer Society, 2009: 223-232.
[12] Golbabaee M. Hyperspectral image compressed sensing via low-rank and joint-sparse matrix recovery[C]//International Conference on Acoustics, Speech, and Signal Processing. Washington, D.C: IEEE Computer Society, 2012: 2741-2744.
[13] Duarte M F, Sarvotham S, Baron D, et al. Distributed compressed sensing of jointly sparse signals[C]//Asilomar Conference on Signals, Systems and Computers. Washington, D.C: IEEE Computer Society, 2005: 1537-1541.
[14] Duarte M F, Baraniuk R G. Kronecker compressive sensing[J]. IEEE Transactions on Image Processing, 2012, 21(2): 494-504.
[15] Wang Z, Feng Y, Jia Y. Spatial-spectral compressive sensing of hyperspectral image[C]//IEEE International Conference on Information Science and Technology. Washington, D.C.: IEEE Computer Society, 2013: 1254-1259.
[16] Li C B, Ting S, Kelly K F, et al. A compressive sensing and unmixing scheme for hyperspectral data processing[J]. IEEE Transactions on Image Processing, 2012, 21(3): 1200-1210.
[17] Zare A, Gader P, Gurumoorthy K S. Directly measuring material proportions using hyperspectral compressive sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(3): 323-327.
[18] Heylen R, Burazerovic D, Scheunders P. Fully constrained least squares spectral unmixing by simplex projection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4112-4122.
[19] Jiao L C, Yan S Y, Liu F, et al. Development and prospect of compressive sensing [J]. Acta Electronica Sinica, 2011, 39(7): 1651-1662 (in Chinese). 焦李成, 杨淑媛, 刘芳, 等. 图像压缩感知回顾与展望[J]. 电子学报, 2011, 39(7): 1651-1662.
[20] Vane G, Green R O, Chrien T G, et al. The airborne visible infrared imaging spectrometer (aviris)[J]. Remote Sensing of Environment, 1993, 44(2): 127-143.

文章导航

/