临近空间高超声速滑跃式轨迹目标跟踪技术
收稿日期: 2014-05-19
修回日期: 2014-09-03
网络出版日期: 2014-12-24
基金资助
国家自然科学基金 (61372027, 61102167, 61102165)
Tracking of hypersonic sliding target in near-space
Received date: 2014-05-19
Revised date: 2014-09-03
Online published: 2014-12-24
Supported by
National Natural Science Foundation of China (61372027, 61102167, 61102165)
针对临近空间目标飞行速度快、机动特性强和加速度突变的特性,提出一种地心直角(ECEF)坐标系下基于目标特性分析的修正强跟踪滤波(MSTF)算法。首先,通过对ECEF坐标系下目标量测的无偏转化处理,以有效减小目标高超声速飞行所带来的旋转、平移和线性化误差影响;接着,在对目标特性充分分析的基础上,合理构建强跟踪滤波(STF)模型,通过对模型参数的自适应调节,以有效实现临近空间高超声速滑跃式轨迹目标的精确跟踪;最后,结合统计学原理对目标加速度的突变进行合理检测和补偿,以进一步修正强跟踪滤波模型的跟踪精度。仿真结果表明,与现有的临近空间目标跟踪算法相比,该算法具有较高的定位跟踪精度。
张翔宇 , 王国宏 , 李俊杰 , 盛丹 . 临近空间高超声速滑跃式轨迹目标跟踪技术[J]. 航空学报, 2015 , 36(6) : 1983 -1994 . DOI: 10.7527/S1000-6893.2014.0318
According to the characteristics of hypersonic speed, strong maneuvering and acceleration gust of near-space target, a modified strong tracking filter (MSTF) algorithm based on the target characteristic analysis is proposed under the Earth centered Earth fixed (ECEF) coordinate system. For this method, unbiased transformation is used to reduce the influence of rotation, translation and linearization errors of the hypersonic target under the ECEF coordinate system firstly. Then based on the full analysis of target characteristics, a strong tracking filter (STF) model is developed to track the near-space hypersonic sliding target by changing the model parameters adaptively. Finally, reasonable detection and compensation of acceleration gust are performed to further modify the tracking accuracy of the STF model. Simulation results show that near-space target tracking can be finished more effectively than the existing methods by using the proposed algorithm.
Key words: near-space; hypersonic; sliding; maneuvering target; tracking
[1] Wang W Q. Near-space vehicles: supply a gap between satellites and airplanes for remote sensing[J]. IEEE Transactions on Aerospace and Electronic Systems Magazine, 2011, 26(4): 4-9.
[2] Wang W Q. Near-space vehicle-borne SAR with reflector antenna for high-resolution and wide-swath remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 338-348.
[3] Cavalli R M, Licciardi G A, Chanussot J. Detection of anomalies produced by buried archaeological structures using nonlinear principal component analysis applied to airborne hyperspectral image[J]. IEEE Transactions on Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2): 659-669.
[4] Hatsuda T, Hashimoto K, Masuda J. Diversity systems comparison of satellite visibility improvement for designing mobile broadcasting satellite system[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(8): 2365-2370.
[5] Wang J, Zong Q, Tian B L, et al. Flight control for a flexible air-breathing hypersonic vehicle based on quasi-continuous high-order sliding mode[J]. Journal of Systems Engineering and Electronics, 2013, 24(2): 288-295.
[6] Saville M A, Jackson J A, Fuller D F. Rethinking vehicle classification with wide-angle polarimetric SAR[J]. IEEE Transactions on Aerospace and Electronic Systems Magazine, 2014, 29(1): 41-49.
[7] Yang Y N, Wu J, Xie Y, et al. Dynamics modeing and maneuverability analysis of a near-space earth observation platform[C]//IEEE Proceedings of the 5th International Conference on Recent Advances in Space Technologies, 2011: 223-226.
[8] Carrillo L R, Russell W J, Hespanha J P, et al. State estimation of multiagent systems under impulsive noise and disturbances[J]. IEEE Transactions on Control Systems Technology, 2014, 23(99): 1-5.
[9] Rucker D C, Wu Y F, Clements L W, et al. A mechanics-based nonrigid registration method for liver surgery using sparse intraoperative data[J]. IEEE Transactions on Medical Imaging, 2014, 33(1): 147-158.
[10] Chang W H, Shin J K, Nam S K. Reverberation and noise robust feature compensation based on IMM[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(8): 1598-1611.
[11] Dah C C, Fang M W. Bearing-only maneuvering mobile tracking with nonlinear filtering algorithms in wireless sensor networks[J]. IEEE Transactions on Systems Journal, 2014, 8(1): 160-170.
[12] Sathyan T, Sinha A, Kirubarajan T, et al. MDA-based data association with prior track information for passive multi-target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 539-555.
[13] Jenkins K L, Castanon D A. Information-based adaptive sensor management for sensor networks[C]//Proceedings of American Control Conference, 2011: 4934-4940.
[14] Thuraiappah S, Tat J C, Sanjeev A, et al. A multiple hypothesis tracker for multitarget tracking with multiple simultaneous measurements[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 448-459.
[15] Carlos R B, Fernando J, Narciso G. Inference of complex trajectories by means of a multibehavior and multiobject tracking algorithm[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(8): 1300-1310.
[16] Xiao S, Li Z H, Tan X S, et al. DG-VSMM tracking algorithm for near-space hypersonic-vehicle[J]. Journal of Ballistic, 2013, 25(2): 22-27 (in Chinese). 肖松, 李志淮, 谭贤四, 等. 临近空间高超声速飞行器DG-VSMM 跟踪算法[J]. 弹道学报, 2013, 25(2): 22-27.
[17] Xiao S, Tan X S, Li Z H, et al. Near space hypersonic target MCT tracking model[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(1): 185-194 (in Chinese). 肖松, 谭贤四, 李志淮, 等.临近空间高超声速目标MCT跟踪模型[J]. 弹箭与制导学报, 2013, 33(1): 185-194.
[18] Li Z H, Tan X S, Wang H, et al. Detection algorithm for hypersonic targets based on motion parameter estimation[J]. Journal of Astronautics, 2012, 33(3): 346-352 (in Chinese). 李志淮, 谭贤四, 王红, 等. 基于运动参数估计的高超声速目标检测方法研究[J]. 宇航学报, 2012, 33(3): 346-352.
[19] Song L P, Ji H B. Modified input estimation with interacting fading memory for maneuvering target tracking[C]//IEEE Proceedings of the 2nd International Conference on Signal Processing Systems, 2010: 448-451.
[20] Zhang X Q, Hu W M, Chen S Y, et al. Graph-embedding-based learning for robust object tracking[J]. IEEE Transactions on Industrial Electronics, 2014, 61(2): 1072-1084.
[21] Mohammad H B, Mohammad B N, Naser P. Intelligent fading memory for high maneuvering target tracking[J]. IEEE Transactions on International Journal of Physical Sciences, 2009, 4(10): 548-553.
[22] Zong Q, Tian L, Dou L Q. Ascent phase trajectory optimization for near space vehicle based on gauss pseudospectral method[J]. Journal of Astronautics, 2010, 31(7): 1776-1781 (in Chinese). 宗群, 田苓, 窦立谦. 基于Gauss 伪谱法的临近空间飞行器上升段轨迹优化[J]. 宇航学报, 2010, 31(7): 1776-1781.
[23] Edrich M, Schroeder A, Meyer F. Design and performance evaluation of a mature FM/DAB/DVB-T multi-illuminator passive radar system[J]. IET Transaction on Radar, Sonar & Navigation, 2014, 8(2): 114-122.
/
〈 | 〉 |