电子与控制

基于时间约束集的多弹道式飞行器避撞发射时间规划

  • 张思宇 ,
  • 于剑桥 ,
  • 李品磊
展开
  • 北京理工大学 宇航学院, 北京 100081
张思宇 男, 博士研究生。主要研究方向: 飞行器协同决策与控制, 飞行器总体设计。 Tel: 010-68918614 E-mail: ylww@bit.edu.cn;李品磊 男, 硕士研究生。主要研究方向: 飞行器总体设计, 鲁棒控制。 Tel: 010-68918614 E-mail: woniujidan@163.com

收稿日期: 2014-08-14

  修回日期: 2014-12-17

  网络出版日期: 2014-12-23

基金资助

国家自然科学基金 (61350010)

Multiple ballistic flight vehicles' launch time planning for collision avoidance based on time constraint set

  • ZHANG Siyu ,
  • YU Jianqiao ,
  • LI Pinlei
Expand
  • School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

Received date: 2014-08-14

  Revised date: 2014-12-17

  Online published: 2014-12-23

Supported by

National Natural Science Foundation of China (61350010)

摘要

提出了通过调整发射时间解决多弹道式飞行器飞行避撞问题的算法框架,在该框架内针对多弹道式飞行器协同打击时是否发生飞行碰撞提出了检验算法,对于飞行器碰撞规避问题建立发射时间约束集模型,约束集由飞行器间发生碰撞的发射时间间隔约束构成。在该时间约束集的基础上建立以多弹道式飞行器同时打击为优化目标、含有不等于号表达式时间约束的优化问题,并通过"Big-M"法将该问题转化为非线性规划问题的标准形式,再利用序列二次规划(SQP)算法进行求解。该框架将发射时间调整问题转化为最优化规划问题,降低了传统遍历性发射时间调整算法的计算复杂度。基于MATLAB平台环境对所提模型及规划算法进行了仿真,验证了所提算法的合理性与有效性,同时具有较高的计算效率。

本文引用格式

张思宇 , 于剑桥 , 李品磊 . 基于时间约束集的多弹道式飞行器避撞发射时间规划[J]. 航空学报, 2015 , 36(7) : 2391 -2399 . DOI: 10.7527/S1000-6893.2014.0352

Abstract

An algorithm framework is presented to solve multiple ballistic flight vehicles' collision avoidance problem by adjusting their launch time. A collision detection algorithm is proposed in the framework for detecting whether there is flight collision or not in multiple ballistic flight vehicles' cooperative attack, and a launch time constraint set model is built in order to solve the collision avoidance problem. The constraint set is constituted by the launch time interval constraints of the flight vehicles in collision. On the foundation of this time constraint set, an optimization problem which regards multiple ballistic flight vehicles' arriving simultaneously as the optimization goals and includes the expression with the sign of inequality constraints is built, and then the "Big-M" method is improved to transform the problem to standard form of nonlinear programming problem which can be solved by sequential quadratic programming (SQP). The method framework transforms the launch time adjusting problem to an optimization planning problem and has reduced the computational complexity compared with the traditional ergodic launch time planning algorithms. With MATLAB platform, simulations have proved the rationality and effectiveness of the proposed method and the method has high computation efficiency.

参考文献

[1] Kim D, Ryoo C K. Defense strategy against multiple anti-ship missiles[C]//ICROS-SICE International Joint Conference. Fukuoka: Fukuoka International Congress Center, 2009: 3635-3639.
[2] Alpert J. Normalized analysis of interceptor missiles using the four-state optimal guidance system[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(6): 838-845.
[3] Wu R Q. Global missile defense cooperative and China[J]. Asian Perspective, 2011, 35(4): 595-615.
[4] Chandler P R, Rasmussen S, Pachter M. UAV cooperative path planning[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit.Reston: AIAA, 2000.
[5] Alighanbari M, Kuwata Y, How J P. Coordination and control of multiple UAVs with timing constrains and loiterings[C]//Proceeding of the 2003 American Control Conference, 2003, 6: 5311-5316.
[6] Beard R W, Mclain T W, Goodrish M, et al. Coordinated target assignment and intercept for unmanned air vehicles[J]. IEEE Transactions on Robotics and Automation, 2002, 18(3): 911-922.
[7] Mclain T W, Beard R W. Cooperative path planning for timing critical missions[C]//Proceeding of the 2003 American Control Conference, 2003, 1: 296-301.
[8] Bellingham J, Tillerson M, Richards A, et al. Multi-task allocation and path planning for cooperating UAVs[M]//Cooperative control: models, applications and algorithms. New York: Springer, 2003: 24-41.
[9] Ren M, Wang K B, Shen L C. Planning and simulation for multi-UAV cooperative penetration mission[J]. Control and Decision, 2011, 26(1): 157-160 (in Chinese). 任敏, 王克波, 沈林成. 多UAV协同突防规划与仿真[J].控制与决策, 2011, 26(1): 157-160.
[10] Jiang G D, Xue G X, Yang Q, et al. Alogrithm of launch time scheme of missile group[J]. Tactical Missile Technology, 2009, 20(1): 34-38 (in Chinese). 江光德, 薛刚逊, 杨其, 等. 导弹群时间分配算法[J]. 战术导弹技术, 2009, 20(1): 34-38.
[11] Yang Y L, Minai A A, Polycarpou M M. Decentralized cooperative search by networked UAVs in an uncertain environment[C]//Proceeding of the 2004 American Control Conference, 2004: 5558-5563.
[12] Yan J J, Ding M Y, Zhou C P. 4D route planning for multi-UAV based on evolutionary algorithm[J]. Journal of System Simulation, 2009, 21(4): 1125-1129 (in Chinese). 严江江, 丁明跃, 周成平. 基于进化算法的多飞行器四维航迹规划方法[J]. 系统仿真学报,2009, 21(4): 1125-1129.
[13] Meng H D, Liao H C, Guo J Y, et al. An fast programming arithmetic of launch time when many winded missiles are launched synchronously[J]. Fire Control & Command Control, 2009, 34(9): 106-113 (in Chinese). 孟海东, 廖洪昌, 郭荆燕, 等. 飞航导弹齐射发射时间的一种快速规划算法[J]. 火力与指挥控制, 2009, 34(9): 106-113.
[14] Liu F, Qiu Z M, Ma Y Q, et al. Models of time coordination for shipborne weapons common-frame launch[C]//Proceedings of 2nd International Conference on Computing, Control and Industrial Engineering, 2011: 148-150.
[15] Schouwenaars T. Safe trajectory planning of autonomous vehicles[D]. Massachusetts: Massachusetts Institute of Technology, 2006.
[16] Rusnak I. Guidance laws in defense against missile attack with acceleration constrained players[C]//AIAA Guidance, Navigation, and Control Conference.Reston: AIAA, 2010:8057.
[17] Li S Y. Research on path planning for flight vehicle[D]. Beijing: Beijing Institute of Technology, 2012 (in Chinese). 李素宇. 飞行器路径规划技术研究[D]. 北京: 北京理工大学, 2012.
[18] Lai Y L, He G P. Optimization method[M]. Beijing: Tsinghua University Press, 2008 (in Chinese). 赖炎连, 贺国平. 最优化方法[M]. 北京: 清华大学出版社, 2008.
[19] Shi G C. Research on algorithm of sequential quadratic programming for nonlinear programming problems[D]. Lanzhou: Lanzhou University, 2009 (in Chinese). 石国春. 关于序列二次规划(SQP)算法求解非线性规划问题的研究[D]. 兰州: 兰州大学, 2009.
[20] Powell M J D. A fast algorithm for nonlinearly constrained optimization calculations[C]//Proceedings Numerical of the 7th Biennial Conference. Dundee: University of Dundee, 1977.

文章导航

/