飞翼气动优化中参数化和网格变形技术
收稿日期: 2014-07-16
修回日期: 2014-12-01
网络出版日期: 2014-12-11
Parameterization and grid deformation techniques for flying-wing aerodynamic optimization
Received date: 2014-07-16
Revised date: 2014-12-01
Online published: 2014-12-11
几何参数化和网格变形是飞行器气动外形数值优化迭代过程中的两个关键技术。基于非均匀有理B样条(NURBS)的自由型面变形(NFFD)技术对几何表示形式具有普适性,距离权函数(DWF)网格变形技术具有计算快速和网格拓扑无关性,两者广泛应用于曲面优化。基于NFFD技术改进了反求参数的Newton迭代算法,并通过提高物面附近网格刚度改进的距离权函数(IDWF)技术使其适用于更大程度的网格变形。还提出了改进后的参数化和网格变形两种技术并行计算的具体实现算法。结合离散伴随方法,使用参数化和网格变形技术,实现了由NACA0012初始翼型到飞翼标准翼型EH1590的反设计;针对某飞翼标模完成了单点全机升阻比优化,升阻比提高约18%。数值结果表明,建立的NFFD和IDWF动网格技术可满足飞翼气动外形优化参数化和快速网格变形的需求。
唐静 , 邓有奇 , 马明生 , 李彬 . 飞翼气动优化中参数化和网格变形技术[J]. 航空学报, 2015 , 36(5) : 1480 -1490 . DOI: 10.7527/S1000-6893.2014.0331
Geometry shape parameterization and grid deformation techniques are two key issues for aerodynamic shape optimization of aircraft by CFD. The non-uniform rational B-splines (NURBS)-based free-form deformation (NFFD), which is universal for arbitrary representation of geometry, and the dynamic grid technique based on distance weighted function (DWF), which is independent from grid topology and fast on calculation, are widely used for shape optimization. In this paper, the NFFD technique is introduced in detail and the Newton iteration algorithms for inverse local coordinates calculation are developed. The DWF is improved (IDWF) to satisfy larger range grid deformation by increasing the stiffness of grid cells near surface. The parallel implementation algorithms for both techniques are designed and introduced in detail. With an optimization solver based on gradient calculated by discrete adjoint method, the standard flying-wing airfoil EH1590 is inversely designed form the initial airfoil NACA0012, and the ratio of lift and drag is optimized and increased by 18% for a whole flying-wing aircraft in a single design state. The result indicates that for flying-wing aerodynamic shape optimization, the NFFD technique is sufficient for shape parameterization and IDWF technique is efficient for grid deformation.
[1] Sederberg T W, Parry S R. Free-form deformation of solid geometric models[J]. ACM Siggraph Computer Graphics, 1986, 20(4): 151-160.
[2] Lamousin H J, Waggenspack W N. NURBS-based free-form deformations[J]. Computer Graphics and Applications, 1994, 14(6): 59-65.
[3] Amoiralis E I, Nikolos I K. Freeform deformation versus B-spline representation in inverse airfoil design[J]. Journal of Computing and Information Science in Engineering, 2008, 8(2): 1-13.
[4] Kenway G K W, Kennedy G J. A CAD-free approach to high-fidelity aerostructural optimization, AIAA-2010-9231[R]. Reston: AIAA, 2010.
[5] Lyu Z, Martins J R R A. RANS-based aerodynamic shape optimization of a blended-wing-body aircraft, AIAA-2013-2586[R].Reston: AIAA, 2013.
[6] Chen S, Bai J Q, Hua J, et al. Application of direct manipulated FFD technique in airfoil aerodynamic optimization[J]. Aeronautical Computing Technique, 2013, 43(1): 40-43 (in Chinese). 陈颂, 白俊强, 华俊, 等. 直接操作FFD技术在翼型气动优化设计中的应用[J]. 航空计算技术, 2013, 43(1): 40-43.
[7] Huang J T, Gao Z H, Bai J Q, et al. Study of robust winglet design based on arbitrary space shape FFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1): 37-46 (in Chinese). 黄江涛, 高正红, 白俊强, 等. 基于任意空间属性FFD技术的融合式翼稍小翼稳健型气动优化设计[J]. 航空学报, 2013, 34(1): 37-46.
[8] Wang Y Y, Zhang B Q, Guo Z D, et al. Aerodynamic optimization design for large upswept afterbody of transport aircraft based on FFD technology[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1806-1814 (in Chinese). 王元元, 张彬乾, 郭兆电, 等. 基于FFD技术的大型运输机上翘后体气动优化设计[J]. 航空学报, 2013, 34(8): 1806-1814.
[9] Zhou X, Li S X, Sun S L, et al. Advances in the research on unstructured mesh deformation[J]. Advances in Mechanics, 2011, 41(5): 547-551 (in Chinese). 周璇, 李水乡, 孙树立, 等. 非结构网格变形方法研究进展[J]. 力学进展, 2011, 41(5): 547-551.
[10] Mcdaniel D R, Morton S A. Efficient mesh deformation for computational stability and control analyses on unstructured viscous meshes, AIAA-2009-1363[R]. Reston: AIAA, 2009.
[11] Wang G, Lei B Q, Ye Z Y. An efficient deformation technique for hybrid unstructured grid using radial basis functions[J]. Journal of Northwestern Polytechnical University, 2011, 29(5): 783-788 (in Chinese). 王刚, 雷博琪, 叶正寅. 一种基于径向基函数的非结构混合网格变形技术[J]. 西北工业大学学报, 2011, 29(5): 783-788.
[12] Rendall T C S, Allen C B. Reduced surface point selection options for efficient mesh deformation using radial basis functions[J]. Journal of Computational Physics, 2010, 229(8): 2810-2820.
[13] Xiao T H, Ang H S, Tong C. A new dynamic mesh generation method for large movement of flapping wings with complex geometries[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1): 41-48 (in Chinese). 肖天航, 昂海松, 仝超. 大幅运动复杂构形扑翼动态网格生成的一种新方法[J]. 航空学报, 2008, 29(1): 41-48.
[14] Zhao Y, Tai J, Ahmed F. Simulation of micro flows with moving boundaries using high-order upwind FV method on unstructured grids[J]. Computational Mechanics, 2002, 28(1): 66-75.
[15] Witteveen J A S. Explicit and robust inverse distance weighting mesh deformation for CFD, AIAA-2010-0165[R]. Reston: AIAA, 2010.
[16] Farin G. Curves and surfaces for computaer aided geometry design—a practical guide[M]. 5th ed. New York: Academic, 2002.
[17] Buhmann M D. Radial basis functions: theory and implementations[M]. 1st ed. Cambridge: Cambridge University Press, 2004.
[18] Roe P L. Approximate riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372.
[19] Kim J S, Kwon O J. Improvement on block LU-SGS scheme for unstructured mesh Navier-Stokes computations, AIAA-2002-1061[R]. Reston: AIAA, 2002.
[20] Spalart S R. A one-equation turbulence model for aerodynamic flows, AIAA-1992-0439[R]. Reston: AIAA, 1992.
[21] Gao Y S, Wu Y Z, Xia J. A discrete adjoint-based approach for airfoil optimization on unstructured meshes[J]. Acta Aerodynamica Sinica, 2013, 31(2): 244-249 (in Chinese). 高宜胜, 伍贻兆, 夏健. 基于非结构网格离散型伴随方法的翼型优化[J]. 空气动力学学报, 2013, 31(2): 244-249.
[22] Nielsen E J, Diskin B, Yamaleev N K. Discrete adjoint-based design optimization of unsteady turbulent flows on dynamic unstructured grids[J]. AIAA Journal, 2010, 48(6): 1195-1206.
[23] Li B, Deng Y Q, Tang J, et al. Discrete adjoint method for 3D on unstructured grid[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 674-686 (in Chinese). 李彬, 邓有奇, 唐静, 等. 基于三维非结构网格的离散型伴随方法[J]. 航空学报, 2014, 35(3): 674-686.
[24] Nocedal J, Wright S J. Numerical optimization[M]. 2nd ed. New York: Springer, 2006.
/
〈 | 〉 |