高超声速进气道快速破膜开启的流动特性
收稿日期: 2014-06-15
修回日期: 2014-07-16
网络出版日期: 2014-12-10
基金资助
国家自然科学基金 (91216115)
Flow characteristics of hypersonic inlet starting with diaphragm rupture
Received date: 2014-06-15
Revised date: 2014-07-16
Online published: 2014-12-10
Supported by
National Natural Science Foundation of China (91216115)
进气道处于起动状态是保证超燃冲压发动机正常工作的前提,进气道帽罩快速开启时的非定常效应可以有效提高进气道的起动能力。采用非定常数值计算深入研究了唇口帽罩不同安装位置开启时的非定常效应对进气道起动过程的影响,分析了不同帽罩安装位置开启时进气道流场的演化过程,并揭示了喉道分离泡的形成机理。研究结果表明,当帽罩上游不存在分离泡时,破膜非定常激波在压缩面反射,与上游复杂波系作用形成沿壁面的低速流,在唇口激波作用下在喉道形成分离泡。帽罩安装靠近唇口可通过缩短激波/边界层作用距离减小低速流动区范围,进气道临界起动内压比随之增大;而当帽罩上游出现大分离泡时,分离泡会先演变为低速流,之后在唇口激波作用下重新聚集形成大尺度分离,进气道临界起动内压比显著降低。
徐骁 , 岳连捷 , 卢洪波 , 肖雅彬 , 张新宇 . 高超声速进气道快速破膜开启的流动特性[J]. 航空学报, 2015 , 36(6) : 1795 -1804 . DOI: 10.7527/S1000-6893.2014.0303
Reliable in-flight starting of the hypersonic inlet is of critical importance for the successful operation of scramjet engines and taking the method of diaphragm rupture can effectively improve the inlet starting ability due to unsteady flow effect. In this paper, time-accurate computations have been performed to investigate the effects on inlet starting process at different diaphragm positions. The evolution process of the inlet flow pattern is analyzed and the mechanism of the separation bubble formation in the throat is thus elucidated. The results show that the unsteady reflected shock interacts with the interface and expansion waves to trigger a low-speed flow when no separation bubble occurs in front of the diaphragm. A separation bubble then forms in the inlet throat, resulting from the low-speed flow under the interaction of cowl shock. Installing the diaphragm downstream would improve the inlet starting ability by decreasing the low-speed flow area. When large separation bubble occurs in front of the diaphragm, the separation bubble will first evolve to a low-speed flow after diaphragm rupture then develop to a new separation in the throat. The inlet starting ability degrades significantly.
[1] Hagenmaier M A, Tam C J, Chakravarthy S. Study of moving start door flow physics for scramjet, AIAA-1999-4957[R]. Reston: AIAA, 1999.
[2] Huebner L D, Rock K E, Ruf E G, et al. Hyper-X flight engine ground testing for X-43 flight risk reduction, AIAA-2001-1809[R]. Reston: AIAA, 2001.
[3] Grainger A L, Boyce R R, Tirtey S C, et al. The unsteady flow physics of hypersonic inlet starting processes, AIAA-2012-5937[R]. Reston: AIAA, 2012.
[4] Ogawa H, Grainger A L, Boyce R R. Inlet starting of high-contraction axisymmetric scramjets[J]. Journal of Propulsion and Power, 2011, 26(26): 1247-1258.
[5] Zhang L, Zhang K Y, Jin Z G, et al. Numerical simulation of a variable geometry designed with compressible ramp movable[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1800-1808 (in Chinese). 张林, 张堃元, 金志光, 等.高超声速二元进气道顶板移动变几何方案数值模拟[J]. 航空学报, 2012, 33(10): 1800-1808.
[6] Wang Y, Fan X Q, Liang J H, et al. Experimental investigation on the starting characteristics of a hypersonic inlet with moving entrance door[J]. Journal of Aerospace Power, 2008, 23(6): 1014-1018 (in Chinese). 王翼, 范晓樯, 梁剑寒, 等. 开启式高超声速进气道启动性能试验[J]. 航空动力学报, 2008, 23(6): 1014-1018.
[7] Tahir R B, Molder S. Unsteady starting of high Mach number air inlets-A CFD study, AIAA-2003-5191[R]. Reston: AIAA, 2003.
[8] Timofeev E V, Tahir R B, Molder S. On recent developments related to flow starting in hypersonic air intakes, AIAA-2008-2512[R]. Reston: AIAA, 2008.
[9] Wang W X, Guo R W. Numerical study of unsteady starting characteristics of a hypersonic inlet[J]. Chinese Journal of Aeronautics, 2013, 26(3): 563-571.
[10] Clemens N T, Narayanaswamy V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2013, 46: 469-492.
[11] Liang D W, Yuan H C, Zhang X J. Research on the effects of start ability of hypersonic inlet[J]. Journal of Astronautics, 2006, 27(4): 714-719 (in Chinese). 梁德旺, 袁化成, 张晓嘉. 影响高超声速进气道起动能力的因素分析[J]. 宇航学报, 2006, 27(4): 714-719.
[12] Holger B, Harvey J K. Shock wave boundary-layer interactions[M]. Cambridge, UK: Cambridge University Press, 2011: 141-159.
[13] Loth E, Titchener N, Babinsky H, et al. Canonical normal shock wave/boundary-layer interaction flows relevant to external compression inlets[J]. AIAA Journal, 2013, 51(9): 2208-2217.
[14] Zhang X J, Yue L J, Chang X Y. Shock arrangement of ramp compression hypersonic inlet with high internal contraction ratio[J]. Journal of Propulsion Technology, 2012, 33(4): 505-509 (in Chinese) 张晓嘉, 岳连捷, 张新宇. 大内收缩比二元高超声速进气道波系配置特性[J]. 推进技术, 2012, 33(4): 505-509.
[15] Yue L J, Zhang X J, Chen L H, et al. Reaserch on optimal design methodology on 2D hypersonic inlet, CSTAM 2008-0028[R]. [s.l.]: CSTAM, 2008. 岳连捷, 张晓嘉, 陈立红, 等. 二元高超声速进气道优化设计方法研究, CSTAM 2008-0028[R]. [s.l.]: CSTAM, 2008.
[16] Korkegi R H. Compression of shock induced two- and three-dimensional incipient turbulence separation[J]. AIAA Journal, 1975, 13(4): 534-535.
[17] Boyce R R, Gerard S, Paull A. The HyShot scramjet flight experiment—flight data and CFD calculations compared, AIAA-2003-7029[R]. Reston: AIAA, 2003.
[18] Boyce R R, Hillier R. Shock-induced three-dimensional separation of an axisymmetric hypersonic turbulent boundary layer, AIAA-2000-2226[R]. Reston: AIAA, 2000.
[19] Lu H B, Yue L J, Xiao Y B, et al. Interaction of isentropic compression waves with a bow shock[J]. AIAA Journal, 2013, 51(10): 2208-2217.
[20] Lu H B, Yue L J, Chang X Y. Flow characteristics of hypersonic inlets with different cowl-lip blunting methods[J]. Science China Physics, Mechanics and Astronomy, 2014, 57(4): 741-752.
[21] van Wie D M, Kwok F T, Walsh R F. Starting characteristics of supersonic inlets, AIAA-1996-2914[R]. Reston: AIAA, 1996.
/
〈 | 〉 |