一种非线性自适应切换控制混合方法及其在倾转旋翼机上的应用
收稿日期: 2014-09-28
修回日期: 2014-12-02
网络出版日期: 2014-12-09
基金资助
航空科学基金 (20100785001)
A nonlinear adaptive switching control blending method and its application to tiltrotor
Received date: 2014-09-28
Revised date: 2014-12-02
Online published: 2014-12-09
Supported by
Aeronautical Science Foundation of China (20100785001)
为避免子控制器切换时控制量的跳变,提出了一种非线性自适应切换控制混合方法。针对输入输出反馈线性化子控制器在使用中存在的逆误差及模型不确定性,采用多层神经网络进行在线补偿,为实现此类非线性自适应子控制器的平滑切换,实际控制律采用各子控制律的凸组合,各组合系数值由切换参数确定。通过合适的设计参数选取与神经网络权值更新律设置,寻找到了闭环切换系统的公共Lyapunov函数,保证了此类系统在切换控制混合下的稳定性。在倾转旋翼机轨迹跟踪控制的应用中,设计了直升机模式、过渡模式与飞机模式的非线性子控制器,应用神经网络在线补偿与随短舱角的控制混合,仿真结果表明该方法具有对系统不确定性的鲁棒性及平滑切换的特性。
王奇 , 吴文海 . 一种非线性自适应切换控制混合方法及其在倾转旋翼机上的应用[J]. 航空学报, 2015 , 36(10) : 3359 -3369 . DOI: 10.7527/S1000-6893.2014.0333
To avoid control signals of sub-controllers bumping at switching time, a nonlinear adaptive switching control blending method is presented. Multilayer neural-net is used to compensate the inversion error of feedback linearization controllers and unmodeled uncertainties. The convex combination of each sub-controller output is utilized as the online control signal in which the weight value of each sub-controller is determined by a switching parameter, and then the continuous and smooth switching can be achieved. A common Lyapunov function of the closed-loop switching control system is found by choosing design parameters and weights update laws of neural-net appropriately, then the stability of this system is guaranteed. With its application to tiltrotor trajectory tracking control, three sub-controllers are designed based on input-output feedback linearization for helicopter mode, transition mode and airplane mode, which are combined with neural-net online compensation and switching control blending by nacelle angle for all controllers. Simulation results show that this method is robust for plant uncertainties and has a smooth switching characteristic in mode conversions.
[1] Calise A J, Rysdyk R T. Adaptive model inversion flight control for tiltrotor aircraft[J]//Proceedings of AIAA Guidance, Navigation and Control Conference. Reston: AIAA, 1997.
[2] Rysdyk R T, Calise A J. Adaptive model inversion flight control for tiltrotor aircraft[C]//Proceedings of American Helicopter Society 54th Annual Forum, 1998.
[3] Rysdyk R T, Calise A J. Adaptive nonlinear control for tiltrotor aircraft[C]//Proceedings of the 1998 IEEE International Conference on Control Application. Piscataway, NJ: IEEE Press, 1998.
[4] Rysdyk R T, Calise A J. Nonlinear adaptive control of tiltrotor aircraft using neural networks, AIAA-1997-5613[R]. Reston: AIAA, 1997.
[5] Rysdyk R T, Calise A J. Robust nonlinear adaptive flight control for consistent handling qualities[J]. IEEE Transactions on Control Systems Technology, 2005, 13(6): 896-910.
[6] Kim B M, Choi K, Kim B S. Trajectory tracking controller design using neural networks for tiltrotor UAV[C]//Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibit. Reston: AIAA, 2007.
[7] Nguyen N, Krishnakumar K. A hybrid intelligent flight control with adaptive learning parameter estimation, AIAA-2007-2841[R]. Reston: AIAA, 1997.
[8] Oishi M, Tomlin C. Switching nonlinear control of a vstol aircraft[C]//Proceedings of IEEE Conference on Decision and Control. Piscataway, NJ: IEEE Press, 1999: 2685-2690.
[9] Oishi M, Tomlin C. Switching in nonminimum phase systems: Applications to a vstol aircraft[C]//Proceedings of American Control Conference, 2000: 487-491.
[10] Benosman M, Lum K Y. Output trajectory tracking for a switched nonlinear non-minimum phase system: The VSTOL aircraft[C]//Proceedings of the 16th IEEE International Conference on Control Applications. Piscataway, NJ: IEEE Press, 2007: 262-269.
[11] Xie W X, Wen C Y, Li Z G. Input-to-state stabilization of switched nonlinear systems[J]. IEEE Transactions on Automatic Control, 2001, 46(7): 1111-1116.
[12] Feng W, Zhang J F. Input-to-state stability of switched nonlinear systems[J]. Science in China Series F: Information Sciences, 2008, 51(12): 1992-2004.
[13] Efimov D, Panteley E, Loría A.On input-to-output stability of switched nonlinear systems[C]//Proceedings of the 17th World Congress the International Federation of Automatic Control Seoul, 2008: 3647-3652.
[14] Tanwani A, Liberzon D. Invertibility of switched nonlinear systems[J]. Automatica, 2010, 46(12): 1962-1973.
[15] Nael H E, Prashant M, Panagiotis D C. Output feedback control of switched nonlinear systems using multiple Lyapunov functions[J]. Systems & Control Letters, 54(2005): 1163-1182.
[16] Bao W, Qi Y W, Yu D, et al. Bumpless switching scheme design and its application to hypersonic vehicle model[J]. International Journal of Innovative Computing, Information and Control, 2012, 8(1(B)): 677-689.
[17] Sontag E. Nonlinear regulator: The piecewise linear approach[J]. IEEE Transactions on Automatic Control, 1981, 26(2): 346-358.
[17] Sontag E. Nonlinear regulator: The piecewise linear approach[J]. IEEE Transactions on Automatic Control, 1981, 26(2): 346-358.
[18] Ye?ildirek A, Lewis F L. Feedback linearization using neural networks[J]. Automatica, 1995, 31(11): 1659-1664.
[19] Lewis F L, Ye?ildirek A, Liu K. Multilayer neural-net robot controller with guaranteed tracking performance[J]. IEEE Transactions on Neural Networks, 1996, 7(2): 388-399.
[20] Zhang Y A, Hu Y N. Nonlinear design approaches for missile control and guidance[M]. Beijing: National Defense Industry Press, 2003: 41-42 (in Chinese).
张友安, 胡云安. 导弹控制和制导的非线性设计方法[M]. 北京: 国防工业出版社, 2003: 41-42.
[21] Kim N. Improved methods in neural network-based adaptive output feedback control, with applications to flight control[D]. Atlanta, GA: Georgia Institute of Technology, 2003.
[22] Wang Q, Wu W H, Qu Z G, et al. Modeling and trimming of tiltrotor aircraft[J]. Flight Dynamics, 2014, 32(2): 122-125 (in Chinese).
王奇, 吴文海, 曲志刚, 等. 倾转旋翼机建模及其配平计算[J]. 飞行力学, 2014, 32(2): 122-125.
/
〈 | 〉 |