基于运动嵌套网格的直升机旋翼/尾桨/垂尾气动干扰计算研究

  • 叶舟 ,
  • 徐国华 ,
  • 史勇杰
展开
  • 1. 南京航空航天大学
    2. 南京航空航天大学直升机旋翼动力学国家级重点实验室
    3. 南京航空航天大学 直升机旋翼动力学国家重点实验室

收稿日期: 2014-09-26

  修回日期: 2014-11-30

  网络出版日期: 2014-12-09

基金资助

航空科学基金;西北工业大学科技创新基金

Computational Research on Aerodynamic Characteristics of Helicopter Main-Rotor/ Tail-Rotor/Vertical-Tail Interaction Based on Moving Embedded Grids

  • YE Zhou ,
  • XU Guo-Hua ,
  • SHI Yong-Jie
Expand

Received date: 2014-09-26

  Revised date: 2014-11-30

  Online published: 2014-12-09

摘要

摘 要:建立了一个基于计算流体力学(CFD)技术的直升机旋翼/尾桨/垂尾气动干扰分析方法。在该方法中,选取Navier-Stokes方程为控制方程对旋翼和尾桨贴体网格进行求解,并采用Baldwin-Lomax(B-L)模型为湍流模型;为了实现旋翼、尾桨和垂尾网格之间的流场信息交换,采用了运动嵌套网格方法;使用二阶迎风的Roe格式进行空间离散,并选取隐式LU-SGS格式进行时间推进。应用所建立的方法,对C-Tung旋翼和Lynx直升机尾桨进行了流场算例计算,并与可得到的试验数据进行对比,验证了方法的正确性。然后,着重针对旋翼/尾桨干扰特性进行了计算,并进一步计入垂尾的干扰,对垂尾/尾桨干扰以及旋翼/尾桨/垂尾干扰特性分别进行了研究,分析了旋翼/尾桨、垂尾/尾桨和旋翼/尾桨/垂尾的气动干扰规律。结果表明:对于不同的垂尾/尾桨构型,阻塞面积越大,对应的尾桨拉力也较大,但尾桨和垂尾获得的净拉力却减小,且不同阻塞面积下,推力式构型尾桨比拉力式尾桨具有更大的净拉力。

本文引用格式

叶舟 , 徐国华 , 史勇杰 . 基于运动嵌套网格的直升机旋翼/尾桨/垂尾气动干扰计算研究[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2014.0314

Abstract

Abstract: A computational method based on CFD technology is developed for helicopter main-rotor/tail-rotor/ vertical-tail interaction analysis. In the present method, Navier-Stokes equations are utilized as the control equations, and the Baldwin-Lomax model is used as the turbulence model. Moving embedded grid method is applied to exchange the flowfield information among the grids of main-rotor, tail-rotor and vertical-tail. For the spatial and time discretization, the second-order upwind Roe scheme and implicit LU-SGS scheme are used respectively. By the method developed, example calculations on the flowfield of well-known C-Tung rotors and Lynx tail rotors are performed, and the validity of the present method is demonstrated by comparing the calculated results with available experimental data. Then, numerical simulations for main-rotor/tail-rotor aerodynamic interference are made, furthermore, taking vertical tail interaction into consideration, tail-rotor/vertical-tail and main-rotor/tail-rotor/vertical-tail interaction calculations are conducted to investigate the interaction mechanism among main rotor, tail rotor and vertical tail. It is shown that, for different vertical-tail/tail-rotor configurations, a larger blockage area always leads to a greater tail-rotor trust, but a smaller clean trust of vertical tail and tail rotor. In addition, the clean tail-rotor trusts of “push configuration” are always higher than that of the “pull configuration” for different blockage areas.

参考文献

[1]Leishman J G, Bi N, et al.Investigation of aerodynamic interactions between a rotor and a fuselage in forward flight[C]. Proceedings of the 45th Annual Forum of the American Helicopter Society, Boston, May 1989.
[2]Hariharan N, Sankar N L.Numerical simulation of rotor-airframe interaction[C]. Proceedings of the 33th Aerospace Sciences Meeting & Exhibit, Reno, January 9-12, 1995.
[3]Steijl R, Barakos G.CFD Analysis of rotor-fuselage interactional aerodynamics[C]. Proceedings of the 45th AIAA Aerospace Sciences Meeting & Exhibit, Reno, Nevada, January 8-11, 2007.
[4]Balcerak J C.Parametric study of the noise produced by the interaction of main rotor wake with the tail rotor[R]. NASA-CR-145001, January, 1976.
[5]Schultz K J, Splettstoesser W R.Helicopter main rotor/tail rotor noise radiation characteristics from scaled model rotor experiments in the DNW[C]. Proceedings of the 49th AHS Annual Forum, St. Louis, May, 1993.
[6]Doolan C J, Leclercq D.An anechoic wind tunnel for the investigation of the main-rotor/tail-rotor blade vortex interaction[C]. The 6th Australian Vertiflite Conference on Helicopter Technology, Melbourne, March, 2007.
[7]Choongmo Y, Takashi A, et al.Numerical analysis for main-rotor/tail-rotor interaction of helicopter[R]. JAXA-RR-08-006E, March, 2009.
[8]樊枫.直升机非定常干扰流场与声场的计算方法研究及应用[D]. 南京: 南京航空航天大学航空宇航学院, 2013.
[9]Tan J F, Wang H W, Wu C, Lin C L.Rotorempennage unsteady aerodynamic interaction with unsteady panelviscous vortex particle hybrid method[J].Acta Aeronautica et Astronautica Ainica, 2013, 35(3):643-656
谭剑锋, 王浩文, 吴超等.基于非定常面元粘性涡粒子混合法的旋翼平尾非定常气动干扰研究[J].航空学报, 2013, 35(3):643-656
[10]Xu H Y, Ye Z Y.Numerical simulation of unsteady flow around forward flight helicopter with coaxial rotors[J].Chinese Journal of Aeronautics, 2011, 24(1):1-7
[11]Ye L, Zhao Q J, Xu G H.Numerical simulation of flowfield of helicopter rotor and fuselage in forward flight based on unstructured embedded technique[J].Journal of Aerospace Power, 2009, 24(4):903-910
叶靓, 招启军, 徐国华.非结构嵌套网格的直升机旋翼 机身前飞流场数值模拟[J].航空动力学报, 2009, 24(4):903-910
[12]Gordon W N, Hall C A.Construction of curvilinear coordinate system and application to mesh generation[J].International Journal for Numerical Methods in Engineering, 1973, 7(4):461-477
[13]Thompson J F, Thames F C, Mastin C W.Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies[J].Journal of Computational Physics, 1974, 15(3):299-319
[14]Starius G.Constructing orthogonal curvilinear meshes by solving initial value problems[J].Numerische Mathematik, 1977, 28(1):25-48
[15]David B S, Gloria K Y, et al.Performance and loads data from an outdoor hover test of a lynx tail rotor[R]. NASA-TM-101057, January, 1989.
[16]Caradonna F X, Tung C.Experimental and analytical studies of a model helicopter rotor in hover[R]. NASA–TM-81232, 1981.
[17]Benjamin M K, Ulrich K, et al.Numerical investigation of helicopter rotors in ground effect[C]. 30th AIAA Applied Aerodynamics Conference. New Orleans, Louisiana, June 25-28, 2012.
文章导航

/